CSS Ribbon

Reproducing the GitHub Ribbon in CSS

【数据分析】算法+Echarts小练

复制代码
'''
处理逻辑:
按number去处理
先遍历所有的number挨个去找有没有在列表里的,在列表里的拿出另外一个append
把number去除的列表
'''
li = []
with open(r'F:\数据分析专用\通话圈分析\new\test1.txt', 'r') as f:
    lines = f.readlines()
    for line in lines:
        li.append(line.strip().split('\t'))

b = len(li)
for i in range(b):
    for j in range(b):
        x = list(set(li[i] + li[j]))
        y = len(li[j]) + len(li[i])
        if i == j or li[i] == 0 or li[j] == 0:
            break
        elif len(x) < y:
            li[i] = x
            li[j] = [0]

fin_li = ([i for i in li if i != [0]])

for i, v in enumerate(fin_li):
    with open(r'F:\数据分析专用\通话圈分析\file\%s.txt' % i, 'a') as f:
        for v1 in v:
            f.write(v1+'\n')
通话圈整合
复制代码
复制代码
li = []
with open(r'F:\数据分析专用\通话圈分析\new\test1.txt', 'r') as f:
    lines = f.readlines()
    for line in lines:
        li.append(line.strip().split('\t'))
for i in range(45):
    with open(r'F:\数据分析专用\通话圈分析\file\%s.txt'%i, 'r') as fb:
        with open(r'F:\数据分析专用\通话圈分析\group\%s.txt'%i,'w')as fp:
            lins = fb.readlines()
            for i in lins:
                # print(i.strip())
                for ind in li:
                    if i.strip() == ind[0]:
                        # print(ind)
                        fp.write(' '.join(ind)+'\n')
整合圈整合
复制代码
复制代码
'''
先生成nodes和links
'''
num = 0
while num <= 44:
    with open(r'F:\数据分析专用\通话圈分析\group\%s.txt' % num, 'r') as f:
        lines = f.readlines()
        nodes_name = []
        for line in lines:
            nodes_name.append(line.strip().split(' ')[0])
        nodes_nam = list(set(nodes_name))
        # print(nodes_name)
    nodes = []
    for i in nodes_nam:
        dic = {}
        dic['name'] = i
        dic['symbolSize'] = int(nodes_name.count(i)) * 2
        nodes.append(dic)
    # print(nodes)
    links = []
    links_path = []
    for line in lines:
        links_path.append(line.strip().split(' '))
    for li in links_path:
        dic_path = {}
        dic_path['source'] = li[0]
        dic_path['target'] = li[1]
        links.append(dic_path)

    from pyecharts import Graph

    graph = Graph("关系图-环形引导布局示例", width=1200, height=600)
    graph.add("", nodes, links, repulsion=80, graph_repulsion=20, graph_edge_length=350,
              line_curve=0.1, label_text_color=None, line_width=1.5, )

    graph.render(r'F:\数据分析专用\通话圈分析\img\%s.html' % num)

    num += 1
Echarts
复制代码

 

posted on   pandaboy1123  阅读(475)  评论(0编辑  收藏  举报

编辑推荐:
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5

导航

统计

点击右上角即可分享
微信分享提示