SM9-加解密
算法过程
程序实现
///************************************************************************ // File name: SM9_enc_dec.c // Version: SM9_enc_dec_V1.0 // Date: Dec 29,2016 // Description: implementation of SM9 encryption algorithm and decryption algorithm // all operations based on BN curve line function // Function List: // 1.bytes128_to_ecn2 //convert 128 bytes into ecn2 // 2.zzn12_ElementPrint //print all element of struct zzn12 // 3.ecn2_Bytes128_Print //print 128 bytes of ecn2 // 4.LinkCharZzn12 //link two different types(unsigned char and zzn12)to one(unsigned char) // 5.Test_Point //test if the given point is on SM9 curve // 6.SM4_Block_Encrypt //encrypt the message with padding,according to PKS#5 // 7.SM4_Block_Decrypt //decrypt the cipher with padding,according to PKS#5 // 8.SM9_H1 //function H1 in SM9 standard 5.4.2.2 // 9.SM9_Enc_MAC //MAC in SM9 standard 5.4.5 // 10.SM9_Init //initiate SM9 curve // 11.SM9_GenerateEncryptKey //generate encrypted private and public key // 12.SM9_Encrypt //SM9 encryption algorithm // 13.SM9_Decrypt //SM9 decryption algorithm // 14.SM9_SelfCheck() //SM9 slef-check // // Notes: // This SM9 implementation source code can be used for academic, non-profit making or non-commercial use only. // This SM9 implementation is created on MIRACL. SM9 implementation source code provider does not provide MIRACL library, MIRACL license or any permission to use MIRACL library. Any commercial use of MIRACL requires a license which may be obtained from Shamus Software Ltd. //**************************************************************************/ #include "SM9_enc_dec.h" #include "kdf.h" #include "SM4.h" /**************************************************************** Function: bytes128_to_ecn2 Description: convert 128 bytes into ecn2 Calls: MIRACL functions Called By: SM9_Init,SM9_Decrypt Input: Ppubs[] Output: ecn2 *res Return: FALSE: execution error TRUE: execute correctly Others: ****************************************************************/ BOOL bytes128_to_ecn2(unsigned char Ppubs[], ecn2 *res) { zzn2 x, y; big a, b; ecn2 r; r.x.a = mirvar(0); r.x.b = mirvar(0); r.y.a = mirvar(0); r.y.b = mirvar(0); r.z.a = mirvar(0); r.z.b = mirvar(0); r.marker = MR_EPOINT_INFINITY; x.a = mirvar(0); x.b = mirvar(0); y.a = mirvar(0); y.b = mirvar(0); a = mirvar(0); b = mirvar(0); bytes_to_big(BNLEN, Ppubs, b); bytes_to_big(BNLEN, Ppubs + BNLEN, a); zzn2_from_bigs(a, b, &x); bytes_to_big(BNLEN, Ppubs + BNLEN * 2, b); bytes_to_big(BNLEN, Ppubs + BNLEN * 3, a); zzn2_from_bigs(a, b, &y); return ecn2_set(&x, &y, res); } /**************************************************************** Function: zzn12_ElementPrint Description: print all element of struct zzn12 Calls: MIRACL functions Called By: SM9_Encrypt,SM9_Decrypt Input: zzn12 x Output: NULL Return: NULL Others: ****************************************************************/ void zzn12_ElementPrint(zzn12 x) { big tmp; tmp = mirvar(0); redc(x.c.b.b, tmp); cotnum(tmp, stdout); redc(x.c.b.a, tmp); cotnum(tmp, stdout); redc(x.c.a.b, tmp); cotnum(tmp, stdout); redc(x.c.a.a, tmp); cotnum(tmp, stdout); redc(x.b.b.b, tmp); cotnum(tmp, stdout); redc(x.b.b.a, tmp); cotnum(tmp, stdout); redc(x.b.a.b, tmp); cotnum(tmp, stdout); redc(x.b.a.a, tmp); cotnum(tmp, stdout); redc(x.a.b.b, tmp); cotnum(tmp, stdout); redc(x.a.b.a, tmp); cotnum(tmp, stdout); redc(x.a.a.b, tmp); cotnum(tmp, stdout); redc(x.a.a.a, tmp); cotnum(tmp, stdout); } /**************************************************************** Function: ecn2_Bytes128_Print Description: print 128 bytes of ecn2 Calls: MIRACL functions Called By: SM9_Encrypt,SM9_Decrypt Input: ecn2 x Output: NULL Return: NULL Others: ****************************************************************/ void ecn2_Bytes128_Print(ecn2 x) { big tmp; tmp = mirvar(0); redc(x.x.b, tmp); cotnum(tmp, stdout); redc(x.x.a, tmp); cotnum(tmp, stdout); redc(x.y.b, tmp); cotnum(tmp, stdout); redc(x.y.a, tmp); cotnum(tmp, stdout); } /**************************************************************** Function: LinkCharZzn12 Description: link two different types(unsigned char and zzn12)to one(unsigned char) Calls: MIRACL functions Called By: SM9_Encrypt,SM9_Decrypt Input: message: len: length of message w: zzn12 element Output: Z: the characters array stored message and w Zlen: length of Z Return: NULL Others: ****************************************************************/ void LinkCharZzn12(unsigned char *message, int len, zzn12 w, unsigned char *Z, int Zlen) { big tmp; tmp = mirvar(0); memcpy(Z, message, len); redc(w.c.b.b, tmp); big_to_bytes(BNLEN, tmp, Z + len, 1); redc(w.c.b.a, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN, 1); redc(w.c.a.b, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 2, 1); redc(w.c.a.a, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 3, 1); redc(w.b.b.b, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 4, 1); redc(w.b.b.a, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 5, 1); redc(w.b.a.b, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 6, 1); redc(w.b.a.a, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 7, 1); redc(w.a.b.b, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 8, 1); redc(w.a.b.a, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 9, 1); redc(w.a.a.b, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 10, 1); redc(w.a.a.a, tmp); big_to_bytes(BNLEN, tmp, Z + len + BNLEN * 11, 1); } /**************************************************************** Function: Test_Point Description: test if the given point is on SM9 curve Calls: Called By: SM9_Decrypt Input: point Output: null Return: 0: success 1: not a valid point on curve Others: ****************************************************************/ int Test_Point(epoint* point) { big x, y, x_3, tmp; epoint *buf; x = mirvar(0); y = mirvar(0); x_3 = mirvar(0); tmp = mirvar(0); buf = epoint_init(); //test if y^2=x^3+b epoint_get(point, x, y); power(x, 3, para_q, x_3); //x_3=x^3 mod p multiply(x, para_a, x); divide(x, para_q, tmp); add(x_3, x, x); //x=x^3+ax+b add(x, para_b, x); divide(x, para_q, tmp); //x=x^3+ax+b mod p power(y, 2, para_q, y); //y=y^2 mod p if (mr_compare(x, y) != 0) return 1; //test infinity ecurve_mult(N, point, buf); if (point_at_infinity(buf) == FALSE) return 1; return 0; } /*************************************************************** Function: SM4_Block_Encrypt Description: encrypt the message with padding,according to PKS#5 Calls: SM4_Encrypt Called By: SM9_Encrypt Input: key:the key of SM4 message:data to be encrypted mlen: the length of message Output: cipher: ciphertext cipher_len:the length of ciphertext Return: NULL Others: ****************************************************************/ void SM4_Block_Encrypt(unsigned char key[], unsigned char * message, int mlen, unsigned char *cipher, int * cipher_len) { unsigned char mess[16]; int i, rem = mlen % 16; for (i = 0; i<mlen / 16; i++) SM4_Encrypt(key, &message[i * 16], &cipher[i * 16]); //encrypt the last block memset(mess, 16 - rem, 16); if (rem) memcpy(mess, &message[i * 16], rem); SM4_Encrypt(key, mess, &cipher[i * 16]); } /*************************************************************** Function: SM4_Block_Decrypt Description: decrypt the cipher with padding,according to PKS#5 Calls: SM4_Decrypt Called By: SM9_Decrypt Input: key:the key of SM4 cipher: ciphertext mlen: the length of ciphertext Output: plain: plaintext plain_len:the length of plaintext Return: NULL Others: ****************************************************************/ void SM4_Block_Decrypt(unsigned char key[], unsigned char *cipher, int len, unsigned char *plain, int *plain_len) { int i; for (i = 0; i<len / 16; i++) SM4_Decrypt(key, cipher + i * 16, plain + i * 16); *plain_len = len - plain[len - 1]; } /**************************************************************** Function: SM9_H1 Description: function H1 in SM9 standard 5.4.2.2 Calls: MIRACL functions,SM3_KDF Called By: SM9_Encrypt Input: Z: Zlen:the length of Z n:Frobniues constant X Output: h1=H1(Z,Zlen) Return: 0: success; 1: asking for memory error Others: ****************************************************************/ int SM9_H1(unsigned char Z[], int Zlen, big n, big h1) { int hlen, i, ZHlen; big hh, i256, tmp, n1; unsigned char *ZH = NULL, *ha = NULL; hh = mirvar(0); i256 = mirvar(0); tmp = mirvar(0); n1 = mirvar(0); convert(1, i256); ZHlen = Zlen + 1; hlen = (int)ceil((5.0*logb2(n)) / 32.0); decr(n, 1, n1); ZH = (char *)malloc(sizeof(char)*(ZHlen + 1)); if (ZH == NULL) return SM9_ASK_MEMORY_ERR; memcpy(ZH + 1, Z, Zlen); ZH[0] = 0x01; ha = (char *)malloc(sizeof(char)*(hlen + 1)); if (ha == NULL) return SM9_ASK_MEMORY_ERR; SM3_KDF(ZH, ZHlen, hlen, ha); for (i = hlen - 1; i >= 0; i--)//key[从大到小] { premult(i256, ha[i], tmp); add(hh, tmp, hh); premult(i256, 256, i256); divide(i256, n1, tmp); divide(hh, n1, tmp); } incr(hh, 1, h1); free(ZH); free(ha); return 0; } /**************************************************************** Function: SM9_Enc_MAC Description: MAC in SM9 standard 5.4.5 Calls: SM3_256 Called By: SM9_Encrypt,SM9_Decrypt Input: K:key Klen:the length of K M:message Mlen:the length of message Output: C=MAC(K,Z) Return: 0: success; 1: asking for memory error Others: ****************************************************************/ int SM9_Enc_MAC(unsigned char *K, int Klen, unsigned char *M, int Mlen, unsigned char C[]) { unsigned char *Z = NULL; int len = Klen + Mlen; Z = (char *)malloc(sizeof(char)*(len + 1)); if (Z == NULL) return SM9_ASK_MEMORY_ERR; memcpy(Z, M, Mlen); memcpy(Z + Mlen, K, Klen); SM3_256(Z, len, C); free(Z); return 0; } /**************************************************************** Function: SM9_Init Description: Initiate SM9 curve Calls: MIRACL functions Called By: SM9_SelfCheck Input: null Output: null Return: 0: success; 5: base point P1 error 6: base point P2 error Others: ****************************************************************/ int SM9_Init() { big P1_x, P1_y; mip = mirsys(1000, 16);; mip->IOBASE = 16; para_q = mirvar(0); N = mirvar(0); P1_x = mirvar(0); P1_y = mirvar(0); para_a = mirvar(0); para_b = mirvar(0); para_t = mirvar(0); X.a = mirvar(0); X.b = mirvar(0); P2.x.a = mirvar(0); P2.x.b = mirvar(0); P2.y.a = mirvar(0); P2.y.b = mirvar(0); P2.z.a = mirvar(0); P2.z.b = mirvar(0); P2.marker = MR_EPOINT_INFINITY; P1 = epoint_init(); bytes_to_big(BNLEN, SM9_q, para_q); bytes_to_big(BNLEN, SM9_P1x, P1_x); bytes_to_big(BNLEN, SM9_P1y, P1_y); bytes_to_big(BNLEN, SM9_a, para_a); bytes_to_big(BNLEN, SM9_b, para_b); bytes_to_big(BNLEN, SM9_N, N); bytes_to_big(BNLEN, SM9_t, para_t); mip->TWIST = MR_SEXTIC_M; ecurve_init(para_a, para_b, para_q, MR_PROJECTIVE); //Initialises GF(q) elliptic curve //MR_PROJECTIVE specifying projective coordinates if (!epoint_set(P1_x, P1_y, 0, P1)) return SM9_G1BASEPOINT_SET_ERR; if (!(bytes128_to_ecn2(SM9_P2, &P2))) return SM9_G2BASEPOINT_SET_ERR; set_frobenius_constant(&X); return 0; } /*************************************************************** Function: SM9_GenerateEncryptKey Description: Generate encryption keys(public key and private key) Calls: MIRACL functions,SM9_H1,xgcd,ecn2_Bytes128_Print Called By: SM9_SelfCheck Input: hid:0x03 ID:identification IDlen:the length of ID ke:master private key used to generate encryption public key and private key Output: Ppubs:encryption public key deB: encryption private key Return: 0: success; 1: asking for memory error Others: ****************************************************************/ int SM9_GenerateEncryptKey(unsigned char hid[], unsigned char *ID, int IDlen, big ke, unsigned char Ppubs[], unsigned char deB[]) { big h1, t1, t2, rem, xPpub, yPpub, tmp; unsigned char *Z = NULL; int Zlen = IDlen + 1, buf; ecn2 dEB; epoint *Ppub; h1 = mirvar(0); t1 = mirvar(0); t2 = mirvar(0); rem = mirvar(0); tmp = mirvar(0); xPpub = mirvar(0); yPpub = mirvar(0); Ppub = epoint_init(); dEB.x.a = mirvar(0); dEB.x.b = mirvar(0); dEB.y.a = mirvar(0); dEB.y.b = mirvar(0); dEB.z.a = mirvar(0); dEB.z.b = mirvar(0); dEB.marker = MR_EPOINT_INFINITY; Z = (char *)malloc(sizeof(char)*(Zlen + 1)); memcpy(Z, ID, IDlen); memcpy(Z + IDlen, hid, 1); buf = SM9_H1(Z, Zlen, N, h1); if (buf != 0) return buf; add(h1, ke, t1);//t1=H1(IDA||hid,N)+ks xgcd(t1, N, t1, t1, t1);//t1=t1(-1) multiply(ke, t1, t2); divide(t2, N, rem);//t2=ks*t1(-1) //Ppub=[ke]P2 ecurve_mult(ke, P1, Ppub); //deB=[t2]P2 ecn2_copy(&P2, &dEB); ecn2_mul(t2, &dEB); printf("\n**************用户B私钥 deB = (xdeB, ydeB):*********************\n"); ecn2_Bytes128_Print(dEB); printf("\n*******************加密主公钥 Ppubs=[ke]P1:**********************\n"); epoint_get(Ppub, xPpub, yPpub); cotnum(xPpub, stdout); cotnum(yPpub, stdout); epoint_get(Ppub, xPpub, yPpub); big_to_bytes(BNLEN, xPpub, Ppubs, 1); big_to_bytes(BNLEN, yPpub, Ppubs + BNLEN, 1); redc(dEB.x.b, tmp); big_to_bytes(BNLEN, tmp, deB, 1); redc(dEB.x.a, tmp); big_to_bytes(BNLEN, tmp, deB + BNLEN, 1); redc(dEB.y.b, tmp); big_to_bytes(BNLEN, tmp, deB + BNLEN * 2, 1); redc(dEB.y.a, tmp); big_to_bytes(BNLEN, tmp, deB + BNLEN * 3, 1); free(Z); return 0; } /**************************************************************** Function: SM9_Encrypt Description: SM9 encryption algorithm Calls: MIRACL functions,zzn12_init(),ecap(),member(),zzn12_ElementPrint(), zzn12_pow(),LinkCharZzn12(),SM3_KDF(),SM9_Enc_MAC(),SM4_Block_Encrypt() Called By: SM9_SelfCheck() Input: hid:0x03 IDB //identification of userB message //the message to be encrypted len //the length of message rand //a random number K lies in [1,N-1] EncID //encryption identification,0:stream cipher 1:block cipher k1_len //the byte length of K1 in block cipher algorithm k2_len //the byte length of K2 in MAC algorithm Ppubs //encrtption public key Output: C //cipher C1||C3||C2 Clen //the byte length of C Return: 0: success 1: asking for memory error 2: element is out of order q 3: R-ate calculation error A: K1 equals 0 Others: ****************************************************************/ int SM9_Encrypt(unsigned char hid[], unsigned char *IDB, unsigned char *message, int mlen, unsigned char rand[],int EncID, int k1_len, int k2_len, unsigned char Ppub[], unsigned char C[], int *C_len) { big h, x, y, r; zzn12 g, w; epoint *Ppube, *QB, *C1; unsigned char *Z = NULL, *K = NULL, *C2 = NULL, C3[SM3_len / 8]; int i = 0, j = 0, Zlen, buf, klen, C2_len; //initiate h = mirvar(0); r = mirvar(0); x = mirvar(0); y = mirvar(0); QB = epoint_init(); Ppube = epoint_init(); C1 = epoint_init(); zzn12_init(&g); zzn12_init(&w); bytes_to_big(BNLEN, Ppub, x); bytes_to_big(BNLEN, Ppub + BNLEN, y); epoint_set(x, y, 0, Ppube); //Step1:calculate QB=[H1(IDB||hid,N)]P1+Ppube Zlen = strlen(IDB) + 1; Z = (char *)malloc(sizeof(char)*(Zlen + 1)); if (Z == NULL) return SM9_ASK_MEMORY_ERR; memcpy(Z, IDB, strlen(IDB)); memcpy(Z + strlen(IDB), hid, 1); buf = SM9_H1(Z, Zlen, N, h); if (buf) return buf; ecurve_mult(h, P1, QB); ecurve_add(Ppube, QB); printf("\n*******************QB:=[H1(IDB||hid,N)]P1+Ppube*****************\n"); epoint_get(QB, x, y); cotnum(x, stdout); cotnum(y, stdout); //Step2:randnom bytes_to_big(BNLEN, rand, r); printf("\n***********************随机数 r:********************************\n"); cotnum(r, stdout); //Step3:C1=[r]QB ecurve_mult(r, QB, C1); printf("\n*************************:C1=[r]QB*******************************\n"); epoint_get(C1, x, y); cotnum(x, stdout); cotnum(y, stdout); big_to_bytes(BNLEN, x, C, 1); big_to_bytes(BNLEN, y, C + BNLEN, 1); //Step4:g = e(P2, Ppub-e) if (!ecap(P2, Ppube, para_t, X, &g)) return SM9_MY_ECAP_12A_ERR; //test if a ZZn12 element is of order q if (!member(g, para_t, X)) return SM9_MEMBER_ERR; printf("\n***********************g=e(P2,Ppube):****************************\n"); zzn12_ElementPrint(g); //Step5:calculate w=g^r w = zzn12_pow(g, r); printf("\n***************************w=g^r:**********************************\n"); zzn12_ElementPrint(w); free(Z); //Step6:calculate C2 if (EncID == 0) { //基于密钥派生函数的序列密码算法 //加密时间: 0.739000 seconds //解密时间: 0.156000 seconds C2_len = mlen; *C_len = BNLEN * 2 + SM3_len / 8 + C2_len; //Step:6-1: calculate K=KDF(C1||w||IDB,klen) klen = mlen + k2_len; Zlen = strlen(IDB) + BNLEN * 14; Z = (char *)malloc(sizeof(char)*(Zlen + 1)); K = (char *)malloc(sizeof(char)*(klen + 1)); C2 = (char *)malloc(sizeof(char)*(mlen + 1)); if (Z == NULL || K == NULL || C2 == NULL) return SM9_ASK_MEMORY_ERR; LinkCharZzn12(C, BNLEN * 2, w, Z, (Zlen - strlen(IDB))); memcpy(Z + BNLEN * 14, IDB, strlen(IDB)); SM3_KDF(Z, Zlen, klen, K); printf("\n*****************K=KDF(C1||w||IDB,klen):***********************\n"); for (i = 0; i<klen; i++) printf("%02x", K[i]); //Step:6-2: calculate C2=M^K1,and test if K1==0? for (i = 0; i<mlen; i++) { if (K[i] == 0) j = j + 1; C2[i] = message[i] ^ K[i]; } if (j == mlen) return SM9_ERR_K1_ZERO; printf("\n************************* C2=M^K1 :***************************\n"); for (i = 0; i<C2_len; i++) printf("%02x", C2[i]); //Step7:calculate C3=MAC(K2,C2) SM9_Enc_MAC(K + mlen, k2_len, C2, mlen, C3); printf("\n********************** C3=MAC(K2,C2):*************************\n"); for (i = 0; i<32; i++) printf("%02x", C3[i]); memcpy(C + BNLEN * 2, C3, SM3_len / 8); memcpy(C + BNLEN * 2 + SM3_len / 8, C2, C2_len); free(Z); free(K); free(C2); } else { //结合0密钥派生函数的分组密码算法(SM4) //加密时间: 0.303000 seconds //解密时间: 0.149000 seconds C2_len = (mlen / 16 + 1) * 16; *C_len = BNLEN * 2 + SM3_len / 8 + C2_len; //Step:6-1: calculate K=KDF(C1||w||IDB,klen) klen = k1_len + k2_len; Zlen = strlen(IDB) + BNLEN * 14; Z = (char *)malloc(sizeof(char)*(Zlen + 1)); K = (char *)malloc(sizeof(char)*(klen + 1)); C2 = (char *)malloc(sizeof(char)*(C2_len + 1)); if (Z == NULL || K == NULL || C2 == NULL) return SM9_ASK_MEMORY_ERR; LinkCharZzn12(C, BNLEN * 2, w, Z, Zlen - strlen(IDB)); memcpy(Z + BNLEN * 14, IDB, strlen(IDB)); SM3_KDF(Z, Zlen, klen, K); printf("\n*****************K=KDF(C1||w||IDB,klen):***********************\n"); for (i = 0; i<klen; i++) printf("%02x", K[i]); //Step:6-2: calculate C2=Enc(K1,M),and also test if K1==0? for (i = 0; i<k1_len; i++) { if (K[i] == 0) j = j + 1; } if (j == k1_len) return SM9_ERR_K1_ZERO; SM4_Block_Encrypt(K, message, mlen, C2, &C2_len); printf("\n*********************** C2=Enc(K1,M) :*************************\n"); for (i = 0; i<C2_len; i++) printf("%02x", C2[i]); //Step7:calculate C3=MAC(K2,C2) SM9_Enc_MAC(K + k1_len, k2_len, C2, C2_len, C3); printf("\n********************** C3=MAC(K2,C2):*************************\n"); for (i = 0; i<32; i++) printf("%02x", C3[i]); memcpy(C + BNLEN * 2, C3, SM3_len / 8); memcpy(C + BNLEN * 2 + SM3_len / 8, C2, C2_len); free(Z); free(K); free(C2); } return 0; } /**************************************************************** Function: SM9_Decrypt Description: SM9 Decryption algorithm Calls: MIRACL functions,zzn12_init(),Test_Point(), ecap(), member(),zzn12_ElementPrint(),LinkCharZzn12(),SM3_KDF(), SM9_Enc_MAC(),SM4_Block_Decrypt(),bytes128_to_ecn2() Called By: SM9_SelfCheck() Input: C //cipher C1||C3||C2 C_len //the byte length of C deB //private key of user B IDB //identification of userB EncID //encryption identification,0:stream cipher 1:block cipher k1_len //the byte length of K1 in block cipher algorithm k2_len //the byte length of K2 in MAC algorithm Output: M //message Mlen: //the length of message Return: 0: success 1: asking for memory error 2: element is out of order q 3: R-ate calculation error 4: test if C1 is on G1 A: K1 equals 0 B: compare error of C3 Others: ****************************************************************/ int SM9_Decrypt(unsigned char C[], int C_len, unsigned char deB[], unsigned char *IDB, int EncID, int k1_len, int k2_len, unsigned char M[], int * Mlen) { big x, y; epoint *C1; zzn12 w; ecn2 dEB; int mlen, klen, Zlen, i, number = 0; unsigned char *Z = NULL, *K = NULL, *K1 = NULL, u[SM3_len / 8]; x = mirvar(0); y = mirvar(0); dEB.x.a = mirvar(0); dEB.x.b = mirvar(0); dEB.y.a = mirvar(0); dEB.y.b = mirvar(0); dEB.z.a = mirvar(0); dEB.z.b = mirvar(0); dEB.marker = MR_EPOINT_INFINITY; C1 = epoint_init(); zzn12_init(&w); bytes_to_big(BNLEN, C, x); bytes_to_big(BNLEN, C + BNLEN, y); bytes128_to_ecn2(deB, &dEB); //Step1:get C1,and test if C1 is on G1 epoint_set(x, y, 1, C1); if (Test_Point(C1)) return SM9_C1_NOT_VALID_G1; //Step2:w = e(C1, deB) if (!ecap(dEB, C1, para_t, X, &w)) return SM9_MY_ECAP_12A_ERR; //test if a ZZn12 element is of order q if (!member(w, para_t, X)) return SM9_MEMBER_ERR; printf("\n*********************** w = e(C1, deB):****************************\n"); zzn12_ElementPrint(w); //Step3:Calculate plaintext mlen = C_len - BNLEN * 2 - SM3_len / 8; if (EncID == 0) { //Step3-1:calculate K=KDF(C1||w||IDB,klen) klen = mlen + k2_len; Zlen = strlen(IDB) + BNLEN * 14; Z = (char *)malloc(sizeof(char)*(Zlen + 1)); K = (char *)malloc(sizeof(char)*(klen + 1)); if (Z == NULL || K == NULL) return SM9_ASK_MEMORY_ERR; LinkCharZzn12(C, BNLEN * 2, w, Z, Zlen - strlen(IDB)); memcpy(Z + BNLEN * 14, IDB, strlen(IDB)); SM3_KDF(Z, Zlen, klen, K); printf("\n*****************K=KDF(C1||w||IDB,klen):***********************\n"); for (i = 0; i<klen; i++) printf("%02x", K[i]); //Step:3-2: calculate M=C2^K1,and test if K1==0? for (i = 0; i<mlen; i++) { if (K[i] == 0) number += 1; M[i] = C[i + C_len - mlen] ^ K[i]; } if (number == mlen) return SM9_ERR_K1_ZERO; *Mlen = mlen; //Step4:calculate u=MAC(K2,C2) SM9_Enc_MAC(K + mlen, k2_len, &C[C_len - mlen], mlen, u); if (memcmp(u, &C[BNLEN * 2], SM3_len / 8)) return SM9_C3_MEMCMP_ERR; printf("\n****************************** M:******************************\n"); for (i = 0; i<mlen; i++) printf("%02x", M[i]); free(Z); free(K); } else { //Step:3-1: calculate K=KDF(C1||w||IDB,klen) klen = k1_len + k2_len; Zlen = strlen(IDB) + BNLEN * 14; Z = (char *)malloc(sizeof(char)*(Zlen + 1)); K = (char *)malloc(sizeof(char)*(klen + 1)); K1 = (char *)malloc(sizeof(char)*(k1_len + 1)); if (Z == NULL || K == NULL || K1 == NULL) return SM9_ASK_MEMORY_ERR; LinkCharZzn12(C, BNLEN * 2, w, Z, Zlen - strlen(IDB)); memcpy(Z + BNLEN * 14, IDB, strlen(IDB)); SM3_KDF(Z, Zlen, klen, K); printf("\n*****************K=KDF(C1||w||IDB,klen):***********************\n"); for (i = 0; i<klen; i++) printf("%02x", K[i]); //Step:3-2: calculate M=dec(K1,C2),and test if K1==0? for (i = 0; i<k1_len; i++) { if (K[i] == 0) number += 1; K1[i] = K[i]; } if (number == k1_len) return SM9_ERR_K1_ZERO; SM4_Block_Decrypt(K1, &C[C_len - mlen], mlen, M, Mlen); //Step4:calculate u=MAC(K2,C2) SM9_Enc_MAC(K + k1_len, k2_len, &C[C_len - mlen], mlen, u); if (memcmp(u, &C[BNLEN * 2], SM3_len / 8)) return SM9_C3_MEMCMP_ERR; free(Z); free(K); free(K1); } return 0; } /**************************************************************** Function: SM9_SelfCheck Description: SM9 self check Calls: MIRACL functions,SM9_Init(),SM9_GenerateEncryptKey(), SM9_Encrypt,SM9_Decrypt Called By: Input: Output: Return: 0: self-check success 1: asking for memory error 2: element is out of order q 3: R-ate calculation error 4: test if C1 is on G1 5: base point P1 error 6: base point P2 error 7: Encryption public key generated error 8: Encryption private key generated error 9: encryption error A: K1 equals 0 B: compare error of C3 C: decryption error Others: ****************************************************************/ int SM9_SelfCheck() { int MAX_LEN=1024; //时间定义 time_t begin, end; //the master private key unsigned char KE[32] = { 0x00,0x01,0xED,0xEE,0x37,0x78,0xF4,0x41,0xF8,0xDE,0xA3,0xD9,0xFA,0x0A,0xCC,0x4E, 0x07,0xEE,0x36,0xC9,0x3F,0x9A,0x08,0x61,0x8A,0xF4,0xAD,0x85,0xCE,0xDE,0x1C,0x22 }; unsigned char rand[32] = {0x00,0x00,0xAA,0xC0,0x54,0x17,0x79,0xC8,0xFC,0x45,0xE3,0xE2,0xCB,0x25,0xC1,0x2B, 0x5D,0x25,0x76,0xB2,0x12,0x9A,0xE8,0xBB,0x5E,0xE2,0xCB,0xE5,0xEC,0x9E,0x78,0x5C }; //standard datas unsigned char std_Ppub[64] = { 0x78,0x7E,0xD7,0xB8,0xA5,0x1F,0x3A,0xB8,0x4E,0x0A,0x66,0x00,0x3F,0x32,0xDA,0x5C, 0x72,0x0B,0x17,0xEC,0xA7,0x13,0x7D,0x39,0xAB,0xC6,0x6E,0x3C,0x80,0xA8,0x92,0xFF, 0x76,0x9D,0xE6,0x17,0x91,0xE5,0xAD,0xC4,0xB9,0xFF,0x85,0xA3,0x13,0x54,0x90,0x0B, 0x20,0x28,0x71,0x27,0x9A,0x8C,0x49,0xDC,0x3F,0x22,0x0F,0x64,0x4C,0x57,0xA7,0xB1 }; unsigned char std_deB[128] = { 0x94,0x73,0x6A,0xCD,0x2C,0x8C,0x87,0x96,0xCC,0x47,0x85,0xE9,0x38,0x30,0x1A,0x13, 0x9A,0x05,0x9D,0x35,0x37,0xB6,0x41,0x41,0x40,0xB2,0xD3,0x1E,0xEC,0xF4,0x16,0x83, 0x11,0x5B,0xAE,0x85,0xF5,0xD8,0xBC,0x6C,0x3D,0xBD,0x9E,0x53,0x42,0x97,0x9A,0xCC, 0xCF,0x3C,0x2F,0x4F,0x28,0x42,0x0B,0x1C,0xB4,0xF8,0xC0,0xB5,0x9A,0x19,0xB1,0x58, 0x7A,0xA5,0xE4,0x75,0x70,0xDA,0x76,0x00,0xCD,0x76,0x0A,0x0C,0xF7,0xBE,0xAF,0x71, 0xC4,0x47,0xF3,0x84,0x47,0x53,0xFE,0x74,0xFA,0x7B,0xA9,0x2C,0xA7,0xD3,0xB5,0x5F, 0x27,0x53,0x8A,0x62,0xE7,0xF7,0xBF,0xB5,0x1D,0xCE,0x08,0x70,0x47,0x96,0xD9,0x4C, 0x9D,0x56,0x73,0x4F,0x11,0x9E,0xA4,0x47,0x32,0xB5,0x0E,0x31,0xCD,0xEB,0x75,0xC1 }; unsigned char std_C_stream[116] = { 0x24,0x45,0x47,0x11,0x64,0x49,0x06,0x18,0xE1,0xEE,0x20,0x52,0x8F,0xF1,0xD5,0x45, 0xB0,0xF1,0x4C,0x8B,0xCA,0xA4,0x45,0x44,0xF0,0x3D,0xAB,0x5D,0xAC,0x07,0xD8,0xFF, 0x42,0xFF,0xCA,0x97,0xD5,0x7C,0xDD,0xC0,0x5E,0xA4,0x05,0xF2,0xE5,0x86,0xFE,0xB3, 0xA6,0x93,0x07,0x15,0x53,0x2B,0x80,0x00,0x75,0x9F,0x13,0x05,0x9E,0xD5,0x9A,0xC0, 0xBA,0x67,0x23,0x87,0xBC,0xD6,0xDE,0x50,0x16,0xA1,0x58,0xA5,0x2B,0xB2,0xE7,0xFC, 0x42,0x91,0x97,0xBC,0xAB,0x70,0xB2,0x5A,0xFE,0xE3,0x7A,0x2B,0x9D,0xB9,0xF3,0x67, 0x1B,0x5F,0x5B,0x0E,0x95,0x14,0x89,0x68,0x2F,0x3E,0x64,0xE1,0x37,0x8C,0xDD,0x5D, 0xA9,0x51,0x3B,0x1C }; unsigned char std_C_cipher[128] = { 0x24,0x45,0x47,0x11,0x64,0x49,0x06,0x18,0xE1,0xEE,0x20,0x52,0x8F,0xF1,0xD5,0x45, 0xB0,0xF1,0x4C,0x8B,0xCA,0xA4,0x45,0x44,0xF0,0x3D,0xAB,0x5D,0xAC,0x07,0xD8,0xFF, 0x42,0xFF,0xCA,0x97,0xD5,0x7C,0xDD,0xC0,0x5E,0xA4,0x05,0xF2,0xE5,0x86,0xFE,0xB3, 0xA6,0x93,0x07,0x15,0x53,0x2B,0x80,0x00,0x75,0x9F,0x13,0x05,0x9E,0xD5,0x9A,0xC0, 0xFD,0x3C,0x98,0xDD,0x92,0xC4,0x4C,0x68,0x33,0x26,0x75,0xA3,0x70,0xCC,0xEE,0xDE, 0x31,0xE0,0xC5,0xCD,0x20,0x9C,0x25,0x76,0x01,0x14,0x9D,0x12,0xB3,0x94,0xA2,0xBE, 0xE0,0x5B,0x6F,0xAC,0x6F,0x11,0xB9,0x65,0x26,0x8C,0x99,0x4F,0x00,0xDB,0xA7,0xA8, 0xBB,0x00,0xFD,0x60,0x58,0x35,0x46,0xCB,0xDF,0x46,0x49,0x25,0x08,0x63,0xF1,0x0A }; unsigned char *std_message = "Chinese IBE standard"; unsigned char hid[] = { 0x03 }; unsigned char *IDA = "Alice", *IDB = "Bob"; unsigned char Ppub[64], deB[128]; unsigned char message[1000], C[1000]; int M_len, C_len;//M_len the length of message //C_len the length of C int k1_len = 16, k2_len = 32; int EncID = 1;//0,stream //1 block int tmp, i; big ke; tmp = SM9_Init(); if (tmp != 0) return tmp; ke = mirvar(0); bytes_to_big(32, KE, ke); printf("\n***********************SM9 密钥生成***************************\n"); printf("用户A的ID号为:%s\n用户B的ID号为:%s\n",IDA,IDB); tmp = SM9_GenerateEncryptKey(hid, IDB, strlen(IDB), ke, Ppub, deB); if (tmp != 0) return tmp; if (memcmp(Ppub, std_Ppub, 64) != 0) return SM9_GEPUB_ERR; if (memcmp(deB, std_deB, 128) != 0) return SM9_GEPRI_ERR; printf("\n***********************SM9 加密算法**************************\n"); printf("要加密的明文消息为:%s\n",std_message); begin = clock(); tmp = SM9_Encrypt(hid, IDB, std_message, strlen(std_message), rand, EncID, k1_len, k2_len, Ppub, C, &C_len); end = clock(); printf("\n\n\t\t\t加密时间: %f seconds\n", (double)(end - begin) / CLOCKS_PER_SEC); if (tmp != 0) return tmp; printf("\n******************************密文为:************************************\n"); for (i = 0; i<C_len; i++) printf("%02x", C[i]); if (EncID == 0) tmp = memcmp(C, std_C_stream,C_len); else tmp=memcmp(C,std_C_cipher,C_len); if (tmp) return SM9_ENCRYPT_ERR; printf("\n\n"); printf("\n**********************SM9 解密算法**************************\n"); begin = clock(); tmp = SM9_Decrypt(std_C_cipher, 128, deB, IDB, 2, k1_len, k2_len, message, &M_len); end = clock(); printf("\n"); message[M_len] = '\0'; printf("明文:%s\n",message); if (tmp != 0) return tmp; if (memcmp(message, std_message, M_len) != 0) return SM9_DECRYPT_ERR; printf("\n\n\t\t\t解密时间: %f seconds\n", (double)(end - begin) / CLOCKS_PER_SEC); printf("\n"); return 0; }
完整代码见github
参考文献
1、国标—SM9-加解密
2、密码学-基础理论与应用(李子臣著)
3、商用密码检测中心-源码下载