ZUC-生成随机序列
问题
ZUC国标上的三个例子生成随机序列
例子1
例子2
例子3
代码1
#define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> typedef unsigned char uint8; typedef unsigned int uint32; uint8 S0[256] = { 0x3e, 0x72, 0x5b, 0x47, 0xca, 0xe0, 0x00, 0x33, 0x04, 0xd1, 0x54, 0x98, 0x09, 0xb9, 0x6d, 0xcb, 0x7b, 0x1b, 0xf9, 0x32, 0xaf, 0x9d, 0x6a, 0xa5, 0xb8, 0x2d, 0xfc, 0x1d, 0x08, 0x53, 0x03, 0x90, 0x4d, 0x4e, 0x84, 0x99, 0xe4, 0xce, 0xd9, 0x91, 0xdd, 0xb6, 0x85, 0x48, 0x8b, 0x29, 0x6e, 0xac, 0xcd, 0xc1, 0xf8, 0x1e, 0x73, 0x43, 0x69, 0xc6, 0xb5, 0xbd, 0xfd, 0x39, 0x63, 0x20, 0xd4, 0x38, 0x76, 0x7d, 0xb2, 0xa7, 0xcf, 0xed, 0x57, 0xc5, 0xf3, 0x2c, 0xbb, 0x14, 0x21, 0x06, 0x55, 0x9b, 0xe3, 0xef, 0x5e, 0x31, 0x4f, 0x7f, 0x5a, 0xa4, 0x0d, 0x82, 0x51, 0x49, 0x5f, 0xba, 0x58, 0x1c, 0x4a, 0x16, 0xd5, 0x17, 0xa8, 0x92, 0x24, 0x1f, 0x8c, 0xff, 0xd8, 0xae, 0x2e, 0x01, 0xd3, 0xad, 0x3b, 0x4b, 0xda, 0x46, 0xeb, 0xc9, 0xde, 0x9a, 0x8f, 0x87, 0xd7, 0x3a, 0x80, 0x6f, 0x2f, 0xc8, 0xb1, 0xb4, 0x37, 0xf7, 0x0a, 0x22, 0x13, 0x28, 0x7c, 0xcc, 0x3c, 0x89, 0xc7, 0xc3, 0x96, 0x56, 0x07, 0xbf, 0x7e, 0xf0, 0x0b, 0x2b, 0x97, 0x52, 0x35, 0x41, 0x79, 0x61, 0xa6, 0x4c, 0x10, 0xfe, 0xbc, 0x26, 0x95, 0x88, 0x8a, 0xb0, 0xa3, 0xfb, 0xc0, 0x18, 0x94, 0xf2, 0xe1, 0xe5, 0xe9, 0x5d, 0xd0, 0xdc, 0x11, 0x66, 0x64, 0x5c, 0xec, 0x59, 0x42, 0x75, 0x12, 0xf5, 0x74, 0x9c, 0xaa, 0x23, 0x0e, 0x86, 0xab, 0xbe, 0x2a, 0x02, 0xe7, 0x67, 0xe6, 0x44, 0xa2, 0x6c, 0xc2, 0x93, 0x9f, 0xf1, 0xf6, 0xfa, 0x36, 0xd2, 0x50, 0x68, 0x9e, 0x62, 0x71, 0x15, 0x3d, 0xd6, 0x40, 0xc4, 0xe2, 0x0f, 0x8e, 0x83, 0x77, 0x6b, 0x25, 0x05, 0x3f, 0x0c, 0x30, 0xea, 0x70, 0xb7, 0xa1, 0xe8, 0xa9, 0x65, 0x8d, 0x27, 0x1a, 0xdb, 0x81, 0xb3, 0xa0, 0xf4, 0x45, 0x7a, 0x19, 0xdf, 0xee, 0x78, 0x34, 0x60 }; uint8 S1[256] = { 0x55, 0xc2, 0x63, 0x71, 0x3b, 0xc8, 0x47, 0x86, 0x9f, 0x3c, 0xda, 0x5b, 0x29, 0xaa, 0xfd, 0x77, 0x8c, 0xc5, 0x94, 0x0c, 0xa6, 0x1a, 0x13, 0x00, 0xe3, 0xa8, 0x16, 0x72, 0x40, 0xf9, 0xf8, 0x42, 0x44, 0x26, 0x68, 0x96, 0x81, 0xd9, 0x45, 0x3e, 0x10, 0x76, 0xc6, 0xa7, 0x8b, 0x39, 0x43, 0xe1, 0x3a, 0xb5, 0x56, 0x2a, 0xc0, 0x6d, 0xb3, 0x05, 0x22, 0x66, 0xbf, 0xdc, 0x0b, 0xfa, 0x62, 0x48, 0xdd, 0x20, 0x11, 0x06, 0x36, 0xc9, 0xc1, 0xcf, 0xf6, 0x27, 0x52, 0xbb, 0x69, 0xf5, 0xd4, 0x87, 0x7f, 0x84, 0x4c, 0xd2, 0x9c, 0x57, 0xa4, 0xbc, 0x4f, 0x9a, 0xdf, 0xfe, 0xd6, 0x8d, 0x7a, 0xeb, 0x2b, 0x53, 0xd8, 0x5c, 0xa1, 0x14, 0x17, 0xfb, 0x23, 0xd5, 0x7d, 0x30, 0x67, 0x73, 0x08, 0x09, 0xee, 0xb7, 0x70, 0x3f, 0x61, 0xb2, 0x19, 0x8e, 0x4e, 0xe5, 0x4b, 0x93, 0x8f, 0x5d, 0xdb, 0xa9, 0xad, 0xf1, 0xae, 0x2e, 0xcb, 0x0d, 0xfc, 0xf4, 0x2d, 0x46, 0x6e, 0x1d, 0x97, 0xe8, 0xd1, 0xe9, 0x4d, 0x37, 0xa5, 0x75, 0x5e, 0x83, 0x9e, 0xab, 0x82, 0x9d, 0xb9, 0x1c, 0xe0, 0xcd, 0x49, 0x89, 0x01, 0xb6, 0xbd, 0x58, 0x24, 0xa2, 0x5f, 0x38, 0x78, 0x99, 0x15, 0x90, 0x50, 0xb8, 0x95, 0xe4, 0xd0, 0x91, 0xc7, 0xce, 0xed, 0x0f, 0xb4, 0x6f, 0xa0, 0xcc, 0xf0, 0x02, 0x4a, 0x79, 0xc3, 0xde, 0xa3, 0xef, 0xea, 0x51, 0xe6, 0x6b, 0x18, 0xec, 0x1b, 0x2c, 0x80, 0xf7, 0x74, 0xe7, 0xff, 0x21, 0x5a, 0x6a, 0x54, 0x1e, 0x41, 0x31, 0x92, 0x35, 0xc4, 0x33, 0x07, 0x0a, 0xba, 0x7e, 0x0e, 0x34, 0x88, 0xb1, 0x98, 0x7c, 0xf3, 0x3d, 0x60, 0x6c, 0x7b, 0xca, 0xd3, 0x1f, 0x32, 0x65, 0x04, 0x28, 0x64, 0xbe, 0x85, 0x9b, 0x2f, 0x59, 0x8a, 0xd7, 0xb0, 0x25, 0xac, 0xaf, 0x12, 0x03, 0xe2, 0xf2 }; uint32 D[16] = { 0x44d7, 0x26bc, 0x626b, 0x135e, 0x5789, 0x35e2, 0x7135, 0x09af, 0x4d78, 0x2f13, 0x6bc4, 0x1af1, 0x5e26, 0x3c4d, 0x789a, 0x47ac }; uint32 LFSR[16] = { 0 }; uint32 X[4] = { 0 }; uint32 R1 = 0, R2 = 0; uint32 W = 0; uint32 mod_add(uint32 a, uint32 b); uint32 mod_2exp_mul(uint32 x, int exp); void LFSRWithInitMode(uint32 u); void LFSRWithWorkMode(); void BitReconstruction(); uint32 mod_add(uint32 a, uint32 b) { uint32 c = a + b; c = (c & 0x7fffffff) + (c >> 31); return c; } uint32 mod_2exp_mul(uint32 x, int exp) { return ((x << exp) | (x >> (31 - exp))) & 0x7fffffff; } uint32 Rot(uint32 x, int move) { return ((x << move) | (x >> (32 - move))); } void LFSRWithInitMode(uint32 u) { uint32 v = 0, tmp = 0, i = 0; v = LFSR[0]; tmp = mod_2exp_mul(LFSR[0], 8); v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[4], 20); v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[10], 21); v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[13], 17); v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[15], 15); v = mod_add(v, tmp); v = mod_add(v, u); if (v == 0) v = 0x7fffffff; for (i = 0; i < 15; i++) LFSR[i] = LFSR[i + 1]; LFSR[15] = v; } void LFSRWithWorkMode() { uint32 v = 0, tmp = 0, i = 0; v = LFSR[0]; tmp = mod_2exp_mul(LFSR[0], 8); v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[4], 20); v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[10], 21); v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[13], 17); v = mod_add(v, tmp); tmp = mod_2exp_mul(LFSR[15], 15); v = mod_add(v, tmp); if (v == 0) v = 0x7fffffff; for (i = 0; i < 15; i++) LFSR[i] = LFSR[i + 1]; LFSR[15] = v; } void BitReconstruction() { X[0] = ((LFSR[15] & 0x7fff8000) << 1) | (LFSR[14] & 0xffff); X[1] = (LFSR[11] << 16) | (LFSR[9] >> 15); X[2] = (LFSR[7] << 16) | (LFSR[5] >> 15); X[3] = (LFSR[2] << 16) | (LFSR[0] >> 15); } uint32 L1(uint32 x) { return (x ^ Rot(x, 2) ^ Rot(x, 10) ^ Rot(x, 18) ^ Rot(x, 24)); } uint32 L2(uint32 x) { return (x ^ Rot(x, 8) ^ Rot(x, 14) ^ Rot(x, 22) ^ Rot(x, 30)); } uint32 S(uint32 a) { uint8 x[4] = { 0 }, y[4] = { 0 }; uint32 b = 0; int i = 0, row = 0, line = 0; x[0] = a >> 24; x[1] = (a >> 16) & 0xff; x[2] = (a >> 8) & 0xff; x[3] = a & 0xff; for (i = 0; i < 4; i++) { //row = x[i] >> 4; //line = x[i] & 0xf; if (i == 0 || i == 2) y[i] = S0[x[i]]; else y[i] = S1[x[i]]; } b = (y[0] << 24) | (y[1] << 16) | (y[2] << 8) | y[3]; return b; } void F() { uint32 W1 = 0, W2 = 0; uint32 tmp1 = 0, tmp2 = 0; W = (X[0] ^ R1) + R2; W1 = R1 + X[1]; W2 = R2 ^ X[2]; R1 = S(L1((W1 << 16) | (W2 >> 16))); R2 = S(L2((W2 << 16) | (W1 >> 16))); } void Key_IV_Insert(uint8* k, uint8* iv) { int i = 0; printf("\ninitial state of LFSR: S[0]-S[15]\n"); for (i = 0; i < 16; i++) { LFSR[i] = (k[i] << 23) | (D[i] << 8) | iv[i]; printf("%08x ", LFSR[i]); } } void Init(uint8* k, uint8* iv) { Key_IV_Insert(k, iv); R1 = R2 = 0; uint32 i = 0; for (i = 0; i < 32; i++) { BitReconstruction(); F(X[0], X[1], X[2]); LFSRWithInitMode(W >> 1); } printf("\n------------------------------------------------------------\nstate of LFSR after executing initialization: S[0]-S[15]\n"); for (i = 0; i < 16; i++) { printf("%08x ", LFSR[i]); } printf("\n------------------------------------------------------------\ninternal state of Finite State Machine:\n"); printf("R1=%08x\n", R1); printf("R2=%08x\n", R2); } uint32* KeyStream_Generator(int keylen) { uint32 Z = 0, i = 0; uint32* keystream = (uint32*)malloc(keylen * sizeof(uint32)); BitReconstruction(); F(X[0], X[1], X[2]); LFSRWithWorkMode(); for (i = 0; i < keylen; i++) { BitReconstruction(); F(X[0], X[1], X[2]); keystream[i] = W ^ X[3]; //一次密钥流生成 LFSRWithWorkMode(); } return keystream; } int main() { int i = 0, keylen = 0; uint8 key[16] = { 0 }; uint8 iv[16] = { 0 }; char k[50] = { 0 }; char v[50] = { 0 }; char tmp[2] = { 0 }; printf("key: "); scanf("%s", k); printf("iv: "); scanf("%s", v); printf("keylen : "); scanf("%d", &keylen); for (i = 0; i < 16; i++) { key[i] = (((k[2 * i] <= '9') ? (k[2 * i] - '0') : (k[2 * i] - 'a' + 10)) << 4) + ((k[2 * i + 1] <= '9') ? (k[2 * i + 1] - '0') : (k[2 * i + 1] - 'a' + 10)); iv[i] = (((v[2 * i] <= '9') ? (v[2 * i] - '0') : (v[2 * i] - 'a' + 10)) << 4) + ((v[2 * i + 1] <= '9') ? (v[2 * i + 1] - '0') : (v[2 * i + 1] - 'a' + 10)); } Init(key, iv); uint32* keylist = KeyStream_Generator(keylen); printf("\n输出密钥流:\n"); for (i = 0; i < keylen; i++) { printf("KeyStream[%d]=%08x\n",i,keylist[i]); } printf("\n"); system("pause"); return 0; }
代码2
#include "zuc.h" unsigned int AddMod(unsigned int a, unsigned int b) { unsigned int c = a + b; if (c >> 31) { c = (c & 0x7fffffff) + 1; } return c; } unsigned int PowMod(unsigned int x, unsigned int k) { return (((x << k) | (x >> (31 - k))) & 0x7fffffff); } unsigned int L1(unsigned int X) { return X ^ ZUC_rotl32(X, 2) ^ ZUC_rotl32(X, 10) ^ ZUC_rotl32(X, 18) ^ ZUC_rotl32(X, 24); } unsigned int L2(unsigned int X) { return X ^ ZUC_rotl32(X, 8) ^ ZUC_rotl32(X, 14) ^ ZUC_rotl32(X, 22) ^ ZUC_rotl32(X, 30); } unsigned char BitValue(unsigned int M[], unsigned int i) { int j, k; j = i >> 5; k = i & 0x1f; if (M[j] & (0x1 << (31 - k))) return 1; else return 0; } unsigned int GetWord(unsigned int k[], unsigned int i) //获取字串中的从第i个比特值开始的字 { int j, m; unsigned int word; j = i >> 5; m = i & 0x1f; if (m == 0) word = k[j]; else word = (k[j] << m) | (k[j + 1] >> (32 - m)); return word; } void LFSRWithInitMode(unsigned int LFSR_S[], unsigned int u) { unsigned int v = LFSR_S[0], i; v = AddMod(v, PowMod(LFSR_S[15], 15)); v = AddMod(v, PowMod(LFSR_S[13], 17)); v = AddMod(v, PowMod(LFSR_S[10], 21)); v = AddMod(v, PowMod(LFSR_S[4], 20)); v = AddMod(v, PowMod(LFSR_S[0], 8)); for (i = 0; i < 15; i++) { LFSR_S[i] = LFSR_S[i + 1]; } LFSR_S[15] = AddMod(v, u); if (!LFSR_S[15]) { LFSR_S[15] = 0x7fffffff; } } void LFSRWithWorkMode(unsigned int LFSR_S[]) { unsigned int v = LFSR_S[0], i; v = AddMod(v, PowMod(LFSR_S[15], 15)); v = AddMod(v, PowMod(LFSR_S[13], 17)); v = AddMod(v, PowMod(LFSR_S[10], 21)); v = AddMod(v, PowMod(LFSR_S[4], 20)); v = AddMod(v, PowMod(LFSR_S[0], 8)); for (i = 0; i < 15; i++) { LFSR_S[i] = LFSR_S[i + 1]; } LFSR_S[15] = v; if (!LFSR_S[15]) { LFSR_S[15] = 0x7fffffff; } } void BR(unsigned int LFSR_S[], unsigned int BR_X[]) { BR_X[0] = ((LFSR_S[15] & 0x7fff8000) << 1) | (LFSR_S[14] & 0x0000ffff); BR_X[1] = ((LFSR_S[11] & 0x0000ffff) << 16) | ((LFSR_S[9] & 0x7fff8000) >> 15); BR_X[2] = ((LFSR_S[7] & 0x0000ffff) << 16) | ((LFSR_S[5] & 0x7fff8000) >> 15); BR_X[3] = ((LFSR_S[2] & 0x0000ffff) << 16) | ((LFSR_S[0] & 0x7fff8000) >> 15); } unsigned int F(unsigned int BR_X[], unsigned int F_R[]) { unsigned int W, W1, W2; W = (BR_X[0] ^ F_R[0]) + F_R[1]; W1 = F_R[0] + BR_X[1]; W2 = F_R[1] ^ BR_X[2]; F_R[0] = L1((W1 << 16) | (W2 >> 16)); F_R[0] = (ZUC_S0[(F_R[0] >> 24) & 0xFF]) << 24 | (ZUC_S1[(F_R[0] >> 16) & 0xFF]) << 16 | (ZUC_S0[(F_R[0] >> 8) & 0xFF]) << 8 | (ZUC_S1[F_R[0] & 0xFF]); F_R[1] = L2((W2 << 16) | (W1 >> 16)); F_R[1] = (ZUC_S0[(F_R[1] >> 24) & 0xFF]) << 24 | (ZUC_S1[(F_R[1] >> 16) & 0xFF]) << 16 | (ZUC_S0[(F_R[1] >> 8) & 0xFF]) << 8 | (ZUC_S1[F_R[1] & 0xFF]); return W; } void ZUC_Init(unsigned int k[], unsigned int iv[], unsigned int LFSR_S[], unsigned int BR_X[], unsigned int F_R[]) { unsigned char count = 32; int i; //loading key to the LFSR s0,s1,s2....s15 printf("\ninitial state of LFSR: S[0]-S[15]\n"); for (i = 0; i < 16; i++) { LFSR_S[i] = ZUC_LinkToS(k[i], ZUC_d[i], iv[i]); printf("%08x ", LFSR_S[i]); } F_R[0] = 0x00; //R1 F_R[1] = 0x00; //R2 // 初始变量和秘钥状态完毕后,开始32轮初始化 while (count) //32 times { unsigned int W; BR(LFSR_S, BR_X); //BitReconstruction W = F(BR_X, F_R); //nonlinear function LFSRWithInitMode(LFSR_S, W >> 1); count--; } } void ZUC_Work(unsigned int LFSR_S[], unsigned int BR_X[], unsigned int F_R[], unsigned int pKeyStream[], int KeyStreamLen) { int i = 0; BR(LFSR_S, BR_X); F(BR_X, F_R); LFSRWithWorkMode(LFSR_S); printf("------------------------------------------------------------\n输出密钥流:\n"); while (i < KeyStreamLen) { BR(LFSR_S, BR_X); pKeyStream[i] = F(BR_X, F_R) ^ BR_X[3]; printf("pKeyStream[%d]=%08x\n", i,pKeyStream[i]); LFSRWithWorkMode(LFSR_S); i++; } } void ZUC_GenKeyStream(unsigned int k[], unsigned int iv[], unsigned int KeyStream[], int KeyStreamLen) { unsigned int LFSR_S[16]; //LFSR state s0,s1,s2,...s15 unsigned int BR_X[4]; //Bit Reconstruction X0,X1,X2,X3 unsigned int F_R[2]; //R1,R2,variables of nonlinear function F int i; //Initialisation ZUC_Init(k, iv, LFSR_S, BR_X, F_R); printf("\n------------------------------------------------------------\nstate of LFSR after executing initialization: S[0]-S[15]\n"); for (i = 0; i < 16; i++) { printf("%08x ", LFSR_S[i]); } printf("\n------------------------------------------------------------\ninternal state of Finite State Machine:\n"); printf("R1=%08x\n", F_R[0]); printf("R2=%08x\n", F_R[1]); //Working ZUC_Work(LFSR_S, BR_X, F_R, KeyStream, KeyStreamLen); } int main() { int KeystreamLen, i; unsigned int key[16] = {0}; unsigned int iv[16] = {0}; char k[50] = { 0 }; char v[50] = { 0 }; printf("key: "); scanf("%s", k); printf("IV : "); scanf("%s", v); printf("KeystreamLen : "); scanf("%d", &KeystreamLen); for (i = 0; i < 16; i++) { key[i] = (((k[2 * i] <= '9') ? (k[2 * i] - '0') : (k[2 * i] - 'a' + 10)) << 4) + ((k[2 * i + 1] <= '9') ? (k[2 * i + 1] - '0') : (k[2 * i + 1] - 'a' + 10)); iv[i] = (((v[2 * i] <= '9') ? (v[2 * i] - '0') : (v[2 * i] - 'a' + 10)) << 4) + ((v[2 * i + 1] <= '9') ? (v[2 * i + 1] - '0') : (v[2 * i + 1] - 'a' + 10)); } printf("\n开始生成秘钥流:\n------------------------------------------------------------"); ZUC_GenKeyStream(key, iv,Keystream, KeystreamLen); }
生成结果
例子1
例子2
例子3
测试用例
key:00000000000000000000000000000000 iv:00000000000000000000000000000000 key:ffffffffffffffffffffffffffffffff iv:ffffffffffffffffffffffffffffffff key:3d4c4be96a82fdaeb58f641db17b455b iv:84319aa8de6915ca1f6bda6bfbd87c66
参考
1、ZUC国标
源码见github