二叉排序树的建立
二叉排序树#
二叉排序树(Binary Sort Tree)又称二叉查找树(Binary Search Tree),亦称二叉搜索树。
性质#
二叉排序树或者是一棵空树,是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
(4)没有键值相等的节点。
可以看出,二叉查找树是一个递归的数据结构,且对二叉查找树进行中序遍历,可以得到一个递增的有序序列。
首先,我们来定义一下 BST 的结点结构体:
1 2 3 4 5 6 7 | //树的定义 typedef struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; }; |
插入#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | //二叉排序树的插入【递归】 int BST_insert( struct TreeNode *p, int k) { //二叉树中插入一个关键字为k的结点 if (p == NULL) { p = ( struct TreeNode*)malloc( sizeof ( struct TreeNode)); p ->val = k; p ->left = p ->right = NULL; return 1; //返回1表示成功 } //树中存在相同的结点 else if (k == p ->val) return 0; //插入到左子树中 else if (k < p ->val) return BST_insert(p ->left,k); //插入到右子树中 else return BST_insert(p ->right ,k); } |
注意,插入的新结点一定是某个叶结点。另外,插入操作既可以递归实现,也可以使用非递归(迭代)实现。通常来说非递归的效率会更高。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | /** * 非递归插入:将关键字k插入到二叉查找树 */ int BST_Insert_NonRecur(BSTree &T, int k) { Node* pre = NULL; // 记录上一个结点 Node* t = T; while (t != NULL) { pre = t; if (k < t->key) t = t->left; else if (k > t->key) t = t->right; else return 0; } Node* node = (Node*)malloc( sizeof (Node)); node->key = k; node->left = NULL; node->right = NULL; node->parent = pre; if (pre == NULL) T = node; else { if (k < pre->key) pre->left = node; else pre->right = node; } return 1; } |
创建 #
1 2 3 4 5 6 7 8 9 10 11 12 13 | //二叉树的构建 void BST_create( struct TreeNode *T, int *str, int n) { //用关键字数组建立一个二叉排序树 T = NULL; //初始时为空树 int i = 0; //依次将每个元素插入 while (i < n) { BST_insert(T,str[i]); i++; } } |
遍历 #
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | //【前序遍历】 void preorder( struct TreeNode *T) { if (T != NULL) { printf( "%d\t" ,T ->val); //打印根结点 inorder(T ->left); //递归遍历左子树 inorder(T ->right); //递归遍历右子树 } } //【后序遍历】 void inorder( struct TreeNode *T) { if (T != NULL) { inorder(T ->left); //递归遍历左子树 inorder(T ->right); //递归遍历右子树 printf( "%d\t" ,T ->val); //打印根结点 } } //【中序遍历】 void postorder( struct TreeNode *T) { if (T != NULL) { inorder(T ->left); //递归遍历左子树 printf( "%d\t" ,T ->val); //打印根结点 inorder(T ->right); //递归遍历右子树 } } |
完整代码#
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | #include <stdio.h> #include <stdlib.h> //树的定义 typedef struct TreeNode { int val; struct TreeNode *left; struct TreeNode *right; }; struct TreeNode *T; //二叉排序树的插入 int BST_insert( struct TreeNode *p, int k) { //二叉树中插入一个关键字为k的结点 if (p == NULL) { p = ( struct TreeNode*) malloc ( sizeof ( struct TreeNode)); p ->val = k; p ->left = p ->right = NULL; return 1; //返回1表示成功 } //树中存在相同的结点 else if (k == p->val) return 0; //插入到左子树中 else if (k < p ->val) return BST_insert(p ->left,k); //插入到右子树中 else return BST_insert(p ->right ,k); } //二叉树的构建 void BST_create( struct TreeNode *T, int *str, int n) { //用关键字数组建立一个二叉排序树 T = NULL; //初始时为空树 int i; //依次将每个元素插入 for (i = 0;i < n;i++) { BST_insert(T,str[i]); } } //【前序遍历】 void preorder( struct TreeNode *T) { if (T != NULL) { printf ( "%d\t" ,T ->val); //打印根结点 inorder(T ->left); //递归遍历左子树 inorder(T ->right); //递归遍历右子树 } } //【中序遍历】 void inorder( struct TreeNode *T) { if (T != NULL) { inorder(T ->left); //递归遍历左子树 inorder(T ->right); //递归遍历右子树 printf ( "%d\t" ,T ->val); //打印根结点 } } //【后序遍历】 void postorder( struct TreeNode *T) { if (T != NULL) { inorder(T ->left); //递归遍历左子树 printf ( "%d\t" ,T ->val); //打印根结点 inorder(T ->right); //递归遍历右子树 } } int main() { int length,str[] = {3,1,4,NULL,2}; struct TreeNode *root; length = sizeof (str) / sizeof (str[0]); BST_create(root,str,length); printf ( "前序遍历:" ); preorder(root); printf ( "\n中序遍历:" ); inorder(root); printf ( "\n后序遍历:" ); postorder(root); return 0; } |
问题#
BST_insert(T,str[i]);每次调用时,传进去的 T 为什么都是 NULL ?
该问题是:传值出现问题,待有缘人解决!
下面给出新的思路:
以下程序均在VS下调试!
这位大哥在创建二叉树时居然是一个节点一个节点写入的,真的强![2]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <assert.h> typedef struct node { int nValue; struct node* pLeft; struct node* pRight; }BiTree; BiTree* CreateBiTree( void ) { BiTree* pRoot = NULL; //根 pRoot = (BiTree*) malloc ( sizeof (BiTree)); if (NULL == pRoot) { printf ( "pRoot空间分配失败!\n" ); exit (-1); } pRoot->nValue = 1; pRoot->pLeft = NULL; pRoot->pRight = NULL; //根的左 pRoot->pLeft = (BiTree*) malloc ( sizeof (BiTree)); if (NULL == pRoot->pLeft) { printf ( "pRoot->pLeft空间分配失败!\n" ); exit (-1); } pRoot->pLeft->nValue = 2; pRoot->pLeft->pLeft = NULL; pRoot->pLeft->pRight = NULL; //根的右 pRoot->pRight = (BiTree*) malloc ( sizeof (BiTree)); if (NULL == pRoot->pRight) { printf ( "pRoot->pRight空间分配失败!\n" ); exit (-1); } pRoot->pRight->nValue = 3; pRoot->pRight->pLeft = NULL; pRoot->pRight->pRight = NULL; //左的左 pRoot->pLeft->pLeft = (BiTree*) malloc ( sizeof (BiTree)); if (NULL == pRoot->pLeft->pLeft) { printf ( "pRoot->pLeft->pLeft空间分配失败!\n" ); exit (-1); } pRoot->pLeft->pLeft->nValue = 4; pRoot->pLeft->pLeft->pLeft = NULL; pRoot->pLeft->pLeft->pRight = NULL; //左的右 pRoot->pLeft->pRight = (BiTree*) malloc ( sizeof (BiTree)); if (NULL == pRoot->pLeft->pRight) { printf ( "pRoot->pLeft->pRight空间分配失败!\n" ); exit (-1); } pRoot->pLeft->pRight->nValue = 5; pRoot->pLeft->pRight->pLeft = NULL; pRoot->pLeft->pRight->pRight = NULL; //右的左 pRoot->pRight->pLeft = (BiTree*) malloc ( sizeof (BiTree)); if (NULL == pRoot->pRight->pLeft) { printf ( "pRoot->pRight->pLeft空间分配失败!\n" ); exit (-1); } pRoot->pRight->pLeft->nValue = 6; pRoot->pRight->pLeft->pLeft = NULL; pRoot->pRight->pLeft->pRight = NULL; return pRoot; } //递归创建二叉树 void RecCreateBiTree(BiTree** ppRoot) { int nNum; assert (ppRoot != NULL); //输入节点的值 scanf ( "%d" , &nNum); //检测是否是结束标志 if (0 == nNum) { return ; } *ppRoot = (BiTree*) malloc ( sizeof (BiTree)); if (NULL == *ppRoot) { printf ( "*ppRoot空间分配失败!" ); exit (-1); } (*ppRoot)->nValue = nNum; (*ppRoot)->pLeft = NULL; (*ppRoot)->pRight = NULL; //处理当前节点的左和右 RecCreateBiTree(&(*ppRoot)->pLeft); RecCreateBiTree(&(*ppRoot)->pRight); } //前序遍历 void PreOrderTraversal(BiTree* pRoot) { if (NULL == pRoot) { return ; } printf ( "%d " , pRoot->nValue); PreOrderTraversal(pRoot->pLeft); PreOrderTraversal(pRoot->pRight); } //中序遍历 void MidOrderTraversal(BiTree* pRoot) { if (NULL == pRoot) { return ; } MidOrderTraversal(pRoot->pLeft); printf ( "%d " , pRoot->nValue); MidOrderTraversal(pRoot->pRight); } //后序遍历 void LastOrderTraversal(BiTree* pRoot) { if (NULL == pRoot) { return ; } LastOrderTraversal(pRoot->pLeft); LastOrderTraversal(pRoot->pRight); printf ( "%d " , pRoot->nValue); } int main( void ) { printf ( "新建二叉树:" ); BiTree* pRoot = CreateBiTree(); printf ( "前序遍历:" ); PreOrderTraversal(pRoot); printf ( "\n" ); printf ( "中序遍历:" ); MidOrderTraversal(pRoot); printf ( "\n" ); printf ( "后序遍历:" ); LastOrderTraversal(pRoot); system ( "pause" ); return 0; } |
下面的这个参考知乎一位老哥[1],稍微修改一下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #include <ctype.h> struct Node { int data; struct Node* pleft; struct Node* pright; }Node; //参数声明 struct Node* createnode( int value); struct Node* addnode( int value, struct Node* pnode); void ppreorder( struct TreeNode* T); void pinorder( struct TreeNode* T); void ppostorder( struct TreeNode* T); void listnodes( struct Node* pnode); int Treeheight( struct Node* pnode); struct Node* createnode( int value) { struct Node* pnode = ( struct Node*) malloc ( sizeof ( struct Node)); pnode->data = value; pnode->pleft = pnode->pright = NULL; return pnode; } struct Node* addnode( int value, struct Node* pnode) { if (pnode == NULL) return createnode(value); if (value == pnode->data) { return pnode; } if (value < pnode->data) { if (pnode->pleft == NULL) { pnode->pleft = createnode(value); return pnode->pleft; } else { return addnode(value, pnode->pleft); } } else { if (pnode->pright == NULL) { pnode->pright = createnode(value); return pnode->pright; } else { return addnode(value, pnode->pright); } } } //【前序遍历】 void ppreorder( struct Node* pnode) { if (pnode != NULL) { printf ( "%d\t" , pnode->data); //打印根结点 pinorder(pnode->pleft); //递归遍历左子树 pinorder(pnode->pright); //递归遍历右子树 } } //【中序遍历】 void pinorder( struct Node* pnode) { if (pnode != NULL) { pinorder(pnode->pleft); //递归遍历左子树 pinorder(pnode->pright); //递归遍历右子树 printf ( "%d\t" , pnode->data); //打印根结点 } } //【后序遍历】 void ppostorder( struct Node* pnode) { if (pnode != NULL) { pinorder(pnode->pleft); //递归遍历左子树 printf ( "%d\t" , pnode->data); //打印根结点 pinorder(pnode->pright); //递归遍历右子树 } } void listnodes( struct Node* pnode) { if (pnode != NULL) { listnodes(pnode->pleft); printf ( "%d\n" , pnode->data); listnodes(pnode->pright); } } int Treeheight( struct Node* pnode) { int LD, RD; if (pnode == NULL) { return 0; } else { LD = Treeheight(pnode->pleft); RD = Treeheight(pnode->pright); return (LD >= RD ? LD : RD) + 1; } } int main( void ) { int i; struct Node* proot = NULL; int length, str[] = { 3,1,4,NULL,2 }; length = sizeof (str) / sizeof (str[0]); for (i = 0; i < length; i++) { if (proot == NULL) { proot = createnode(str[i]); } else { addnode(str[i], proot); } } printf ( "新建二叉树:" ); listnodes(proot); printf ( "\nThe height of tree is %d!" , Treeheight(proot)); printf ( "\n前序遍历:" ); ppreorder(proot); printf ( "\n中序遍历:" ); pinorder(proot); printf ( "\n后序遍历:" ); ppostorder(proot); return 0; } |
参考#
2、创建二叉树
作者:Hang Shao
出处:https://www.cnblogs.com/pam-sh/p/12684639.html
版权:本作品采用「知识共享」许可协议进行许可。
声明:欢迎交流! 原文链接 ,如有问题,可邮件(mir_soh@163.com)咨询.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)