线性滤波

线性滤波:方框滤波、均值滤波、高斯滤波

平滑处理(smoothing)也叫模糊处理(bluring),常用来减少图像上的噪点或者失真,还能用来降低图像分辨率。

1、图像滤波

在尽量保持图像细节特征的前提下,对图像的噪点进行抑制,消除图像中的噪声成分叫做图像的平滑化或滤波操作

信号或图像的能量大部分集中在中低频段,在高频段,有用的信息常被噪声淹没。所以一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。

图像滤波目的

抽出特定频段的特征作为图像识别的依据;

消除图像数字化时混入的噪声;

滤波处理要求

不能损坏图像轮廓、边缘等重要信息;

使图像清晰、视觉效果好;

平滑滤波有两类:(1)为了模糊;(2)为了消除噪音;

滤波器:一个包含加权系数的窗口,将窗口放在图像之上,透过窗口看我们得到的图像。

2、线性滤波器

3、滤波和模糊

滤波是将信号中特定频段滤除,是抑制和防止干扰的一项重要措施。滤波可分为低通滤波和高通滤波;低通:模糊,高通:锐化

比如高斯滤波:

  • 高斯滤波就是指高斯函数作为滤波函数的滤波操作;
  • 高斯模糊就是高斯低通滤波;

4、领域算子

邻域算子:本像素周围的像素值来决定此像素的最终输出值的一种算子。

邻域算子作用:局部调色;图像滤波,实现平滑和锐化;去燥;边缘增强;

线性邻域滤波:一种常用的邻域算子,像素的输出值取决于输入像素的加权和,用不同的权重去结合一个邻域内的像素,得到最终的像素值。

h(x,y)称为核,是滤波器的加权系数,即滤波系数。

过程=CNN里的卷积

 5、方框滤波boxFilter

核:

normalize=true,就成了均值滤波。归一化:将要处理的量缩放到一个范围,方便统一处理;

noramlize=false,计算像素邻域内的积分特性,如密集光流算法中的协方差矩阵。

7、均值滤波blur

最简单的滤波操作。

输出图像每个像素是核窗口内对应范围的所有像素的均值,也就是归一化后的方框滤波。

主要方法:邻域平均法。

缺点:不能很好地保护图像细节,去燥的同时也破坏了图像细节,是图像变得模糊。

8、高斯滤波

线性平滑滤波,可以消除高斯噪声。图像与正态分布做卷积,正态分布也叫高斯分布。

图像与圆形方框模糊做卷积能生成更加精确地焦外成像结果。由于高斯函数的傅里叶变换是另外一个高斯函数,所以高斯模糊就相当于对图像来说是个低通滤波操作。

高斯滤波器对于抑制服从正态分布的噪声非常有效。

 

μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数中位数、众数相同,均等于μ。

σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

一般用二维零均值离散高斯函数做平滑滤波器。

高斯滤波函数GaussianBlur

 

posted @ 2019-07-25 19:52  Austin_anheqiao  阅读(4517)  评论(0编辑  收藏  举报