hdu 2604 递推 矩阵快速幂
这位作者讲的不错,可以看看他的
#include <cstdio> #include <iostream> #include <algorithm> #include <cmath> #include <cstring> using namespace std; const int N = 5; int msize, Mod; struct Mat { int mat[N][N]; }; Mat operator *(Mat a, Mat b) { Mat c; memset(c.mat, 0, sizeof(c.mat)); for(int k = 0; k < msize; ++k) for(int i = 0; i < msize; ++i) if(a.mat[i][k]) for(int j = 0; j < msize; ++j) if(b.mat[k][j]) c.mat[i][j] = (c.mat[i][j] +a.mat[i][k] * b.mat[k][j])%Mod; return c; } Mat operator ^(Mat a, int k) { Mat c; memset(c.mat,0,sizeof(c.mat)); for(int i = 0; i < msize; ++i) c.mat[i][i]=1; for(; k; k >>= 1) { if(k&1) c = c*a; a = a*a; } return c; } int main() { // freopen("in.txt","r",stdin); int n; msize = 4; int f[] = {9, 6, 4, 2}; while(~scanf("%d%d", &n, &Mod)) { if(n <= 4) { printf("%d\n", f[4-n] % Mod); continue; } Mat A; memset(A.mat,0,sizeof(A.mat)); for(int i = 0; i < msize; i++) A.mat[0][i] = 1; A.mat[0][1] = 0; for(int i = 1; i < msize; i++) A.mat[i][i-1] = 1; A = A^(n - msize); int ans = 0; for(int i=0; i < msize; i++) ans = (ans + A.mat[0][i]*f[i]) % Mod; printf("%d\n", ans); } return 0; }