csu-acm 1503: 点到圆弧的距离
分析:
先判断点和圆心的连线是否在圆弧范围内,如果在,最短距离即到圆心的距离减去半径的绝对值;反之,为到端点的最短距离。
具体看注释
#include <bits/stdc++.h> using namespace std; #define eps 1e-8 const double pi=acos(-1); struct Point { double x,y; Point(double a=0,double b=0) { x=a; y=b; } }; Point operator - (Point a,Point b) { return Point(a.x-b.x,a.y-b.y); } double dist(Point a,Point b) { return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); } double multi(Point a,Point b) { return a.x*b.x+a.y*b.y; } double cross(Point a,Point b) { return a.x*b.y-a.y*b.x; } Point TriangleCircumCenter(Point a,Point b,Point c) { Point res; double a1=atan2(b.y-a.y,b.x-a.x)+pi/2; double a2=atan2(c.y-b.y,c.x-b.x)+pi/2; double ax=(a.x+b.x)/2; double ay=(a.y+b.y)/2; double bx=(c.x+b.x)/2; double by=(c.y+b.y)/2; double r1=(sin(a2)*(ax-bx)+cos(a2)*(by-ay))/(sin(a1)*cos(a2)-sin(a2)*cos(a1)); return Point(ax+r1*cos(a1),ay+r1*sin(a1)); } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int x1,y1,x2,y2,x3,y3,xp,yp; int kase=0; while(~scanf("%d%d%d%d%d%d%d%d",&x1,&y1,&x2,&y2,&x3,&y3,&xp,&yp)) { Point p1=Point(x1,y1); Point p2=Point(x2,y2); Point p3=Point(x3,y3); Point pp=Point(xp,yp); Point pc=TriangleCircumCenter(p1,p2,p3); //算圆心 double temp=cross(p2-p1,p3-p1); if(temp<0) //如果是顺时针,把p1和p3点互换 { Point t=p1; p1=p3; p3=t; } double cosA=multi(p1-pc,p3-pc)/(dist(p1,pc)*dist(p3,pc)); if(fabs(cosA)>1) //如果fabs(cosA)>1,那么acos(cosA)算出的结果是不合法的 { if(cosA<0) cosA+=eps; else cosA-=eps; } double maxd=acos(cosA); //算p1-pc与p3-pc的夹角 if(cross(p1-pc,p3-pc)<0 && fabs(cross(p1-pc,p3-pc))>eps) maxd=2*pi-maxd; double cosB=multi(p1-pc,pp-pc)/(dist(p1,pc)*dist(pp,pc)); if(fabs(cosB)>1) { if(cosB<0) cosB+=eps; else cosB-=eps; } double degree=acos(cosB); //算p1-pc与pp-pc的夹角 if(cross(p1-pc,pp-pc)<0 && fabs(cross(p1-pc,pp-pc))>eps) degree=2*pi-degree; if(degree<maxd) printf("Case %d: %.3lf\n",++kase,fabs(dist(pp,pc)-dist(p1,pc))); else printf("Case %d: %.3lf\n",++kase,min(dist(pp,p1),dist(pp,p3))); } return 0; }