线性动态规划基础

最大子段和:

dp[0]=a[0];
for(int i=1; i<n; i++) {   if(dp[i-1]>0)     dp[i]=dp[i-1]+a[i];   else dp[i]=a[i];
}

dp[i]的值是从左至右包含a[i]的最大的子段和。dp[i]中最大的即整个串的最大的子段和。

 

最长公共子序列:

状态转移方程:

  if(i==0 || j==0) dp[i,j]=0;

  else if(X[i]==Y[j]) dp[i,j]= dp[i-1,j-1]+1;

  else dp[i,j]= max(dp[i-1,j], dp[i,j-1]);

#include <iostream>
#include<cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int MAX=1000;
int dp[MAX][MAX]={0};

int LCS( char *X, char *Y, int m, int n )
{
    for (int i=1; i<=m; i++)
    {
        for (int j=1; j<=n; j++)
        {
            if (X[i-1] == Y[j-1])
                dp[i][j] = dp[i-1][j-1] + 1;
            else
                dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
        }
    }
    return dp[m][n];
}

 

最长回文串:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
using namespace std;

//(dp)时间复杂度O(n^2),空间复杂度O(n^2)
string LPS(string s)
{
    const int len = s.size();
    if(len <= 1)return s;
    bool dp[len][len];
    memset(dp, 0, sizeof(dp));
    int resLeft = 0, resRight = 0;
    dp[0][0] = true;
    for(int i = 1; i < len; i++)
    {
        dp[i][i] = true;
        dp[i][i-1] = true;//这个初始化容易忽略,当k=2时要用到
    }
    for(int k = 2; k <= len; k++)//枚举子串长度
        for(int i = 0; i <= len-k; i++)//枚举子串起始位置
        {
            if(s[i] == s[i+k-1] && dp[i+1][i+k-2])
            {
                dp[i][i+k-1] = true;
                if(resRight-resLeft+1 < k)
                {
                    resLeft = i;
                    resRight = i+k-1;
                }
            }
        }
    return s.substr(resLeft, resRight-resLeft+1);
}
//时间复杂度O(n^2),空间复杂度O(1)
string LPS2(string s)
{
    const int len = s.size();
    if(len <= 1)return s;
    int start, maxLen = 0;
    for(int i = 1; i < len; i++)
    {
        //寻找以i-1,i为中点偶数长度的回文
        int low = i-1, high = i;
        while(low >= 0 && high < len && s[low] == s[high])
        {
            low--;
            high++;
        }
        if(high - low - 1 > maxLen)
        {
            maxLen = high - low -1;
            start = low + 1;
        }
        //寻找以i为中心的奇数长度的回文
        low = i- 1;
        high = i + 1;
        while(low >= 0 && high < len && s[low] == s[high])
        {
            low--;
            high++;
        }
        if(high - low - 1 > maxLen)
        {
            maxLen = high - low -1;
            start = low + 1;
        }
    }
    return s.substr(start, maxLen);
}

 

最长递增子序列

状态转移方程(O(n^2)):

  dp[0]=1;

  if(i<j && a[i]<a[j]) dp[i]=dp[j]+1;

O(nlogn):

  B[i]记录的是最长递增子序列长度为i的序列的最小的末尾元素的值。

  例如{1,6,4,9,5,7,8,6,8,9};

  则B[1]=1;

  B[2]=[6];

  由于4比6小,所以此时B[2]=4;此时长度为2的LIS的最小末尾元素是4;

  B[3]=9;

  B[3]=5;

  B[4]=7;

  B[5]=8;

  由于6大于dp[3]小于B[4],所以此时B[4]=6;

  B[5]=8;

  B[6]=9;

  LIS就为6,并且末尾最小的元素是9。

  更改元素值是用二分,速度更快。

#include <iostream>
#include <algorithm>
using namespace std;

const int Max=10000;

int dp[Max];
// dp[j] = max(dp[i]) + 1
int LIS_DP_N2(int *a, int n)
{
    dp[0]=1;

    for(int i = 1; i < n; i++)
    {
        int maxLen = 0;
        for(int j = 0; j < i; j++)
            if(a[i] > a[j])
                maxLen=max(maxLen,dp[j]);
        dp[i] = maxLen + 1;
    }
    int maxLIS = 0;
    for(int i = 0; i < n; i++)
    {
        if(maxLIS < dp[i])
            maxLIS = dp[i];
    }
    return maxLIS;
}
int BinarySearch(int *a, int value, int n)
{
    int low = 0;
    int high = n - 1;
    while(low <= high)
    {
        int mid = (high + low) / 2;
        if(a[mid] == value)
            return mid;
        else if(value<a[mid])
            high = mid - 1;
        else
            low = mid + 1;
    }
    return low;
}
int Len[Max];   //存放的是从左至右的LIS的值
int LIS_DP_NlogN(int *a, int n)
{
    int B[n];
    int nLISLen = 1;
    B[0] = a[0];
    Len[0]=1;
    for(int i = 1; i < n; i++)
    {
        if(a[i] > B[nLISLen - 1])
        {
            B[nLISLen] = a[i];
            nLISLen++;
            Len[i]=nLISLen;
        }
        else
        {
            int pos = BinarySearch(B, a[i], nLISLen);
            B[pos] = a[i];
            Len[i]=pos+1;
        }
    }
    return nLISLen;
}

 

posted @ 2016-10-27 17:44  Pacify  阅读(726)  评论(0编辑  收藏  举报