HashMap在JDK1.7和1.8的区别(附带ConcurrentHashMap,个人理解向)
前言:本文只是总结,具体实现需要结合源码理解,本问题旨在探讨跟着JDK的迭代,理解设计者的思维模式,思考为什么这么设计(Talk is cheap,show me the code)
有关HashMap的面试常见问题可以参考大佬的总结:https://blog.csdn.net/v123411739/article/details/106324537
一、HashMap在JDK1.8里的优化
先放一张大佬总结的图,根据源码去理解里面的区别
1.初始化操作集成在reSize里面(1.7中单独方法inflateTable)tips:不明觉厉,少一个方法会提高效率吗?
//JDK1.7 private void inflateTable(int toSize) { // Find a power of 2 >= toSize int capacity = roundUpToPowerOf2(toSize); threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1); table = new Entry[capacity]; initHashSeedAsNeeded(capacity); } //JDK1.8在后面resize方法可以找到
2.通过构造函数指定容量时计算capacity时使用五次|=运算、五次位运算、一次加法和一次减法(1.7调用Integer.highestOneBit()取最高位后再做一次左移,总计使用五次|=运算、七次位运算和两次减法)
tips:就是把原先直接调用Integer.highestOneBit()里多余的两次位运算省略了,其实没优化多少,加减运算和位运算效率相当,而乘除运算比位运算慢几十倍,这是优化的关键所在。
//JDK1.7 private static int roundUpToPowerOf2(int number) { // assert number >= 0 : "number must be non-negative"; return number >= MAXIMUM_CAPACITY ? MAXIMUM_CAPACITY : (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1; } public static int highestOneBit(int i) { // HD, Figure 3-1 i |= (i >> 1); i |= (i >> 2); i |= (i >> 4); i |= (i >> 8); i |= (i >> 16); return i - (i >>> 1); } //JDK1.8 static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; }
3.扰动处理1次位运算,1次异或(1.7使用4次位运算,5次异或)tips:同上不明觉厉
//JDK1.7 final int hash(Object k) { int h = hashSeed; if (0 != h && k instanceof String) { return sun.misc.Hashing.stringHash32((String) k); } h ^= k.hashCode(); h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } //JDK1.8 static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
4.插入时采用尾插法,避免了并发扩容情况下罕见的循环链表(头插法效率高但是会倒置链表顺序,尾插法按插入顺序维护解决了循环链表的bug但是效率低每次插入需要遍历)
tips:其实链表插入快的优点HashMap并没有发挥到,因为put时总要遍历一遍key,链表遍历又非常慢,但是扩容后转移数据时是单纯的链表插入操作于是就有了效率问题,设计者在扩容转移数据方面做了如下第6点的优化。
//JDK1.7 void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } createEntry(hash, key, value, bucketIndex); } void createEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; //新建的Entry指向e,即头插法 table[bucketIndex] = new Entry<>(hash, key, value, e); size++; } Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } //DK1.8在后面putVal方法可以找到
5.先插入再扩容,扩容后进行统一transfer操作(1.7先扩容后插入)
tips:1.7只需要判断key是否相等,头插法效率高不需要遍历,可以在插入前判断是否需要扩容,1.8采用尾插法也需要遍历于是和key值判等写在一起,同时计算插入后节点数量达到树化个数(也可能扩容不树化),所以这大概只是流程变化引起的差异,归根结底都是改用尾插法导致的。
//JDK1.7 void addEntry(int hash, K key, V value, int bucketIndex) { if ((size >= threshold) && (null != table[bucketIndex])) { resize(2 * table.length); hash = (null != key) ? hash(key) : 0; bucketIndex = indexFor(hash, table.length); } createEntry(hash, key, value, bucketIndex); } //JDK1.8 final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { …… //头结点判空 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; //key值判等 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //是否为树节点 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { //结点不为空,key值和头结点key不相等,不为树节点则开始遍历 for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { //尾插法 p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } …… } ++modCount; …… return null; }
6.扩容transfer时,只考虑高位bit,高位为0则保持在原索引位置,为1则偏移+原capacity,巧用&运算(详情见下方注释),前提是capacity为2的幂数(1.7采用重新遍历,1.8如果采用遍历的话,哈希冲突时效率很低,尾插法需要遍历链表,头插法则不需要) tips:高低位巧用&运算的前提是hash&(n-1)等价于对hash mod n,即n为2的幂数。
//JDK1.7 void transfer(Entry[] newTable, boolean rehash) { int newCapacity = newTable.length; for (Entry<K,V> e : table) { while(null != e) { Entry<K,V> next = e.next; if (rehash) { e.hash = null == e.key ? 0 : hash(e.key); } int i = indexFor(e.hash, newCapacity); //头插法 e.next = newTable[i]; newTable[i] = e; e = next; } } } //JDK1.8 final Node<K,V>[] resize() { …… if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; //头结点不为空 if ((e = oldTab[j]) != null) { oldTab[j] = null; //尾部为空则插入尾部 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; //如果是树结点则分裂为两个树,和链表的高低位分批插入 else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order 尾插法保持顺序不变 //lo即LowBit低位,hi即HignBit高位,四个变量分别为高低位的头和尾 Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; //定位到index的算法为hash&(capacity-1)),而capacity为2的幂数,以16为例,扩容后为32,那么任何数和01111(16-1)相&的结果和11111(32-1)相&只有最高位不同 //与10000(16)相&得0,那么与11111(32-1)相&最高位为0,则扩容后index不变,在这里用loHead和loTail表示这组链表 if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } //与10000(16)相&得1,那么与11111(32-1)相&最高位为1,则扩容后index偏移16(capacity),在这里用hiHead和hiTail表示这组链表 else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); //拼接低位链表头尾 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } //拼接高位链表头尾 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
7.结构上加了红黑树,链表长度为8且数组长度大于等于64时树化,数组长度不足时扩容(红黑树查找效率高,但是占用空间多,结点为链表结点的2倍)。
tips:不明觉厉,以后还要多补充数据结构的知识。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; //容量初始化 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; //二次哈希定位后结点为空 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; //头结点key值相等,替换 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //树结点 else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { //尾插法 p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st //链表结点数大于8时,树化(treeifyBin里还要判断) treeifyBin(tab, hash); break; } //遍历时发现key值相等,替换 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } …… return null; } final void treeifyBin(Node<K,V>[] tab, int hash) { int n, index; Node<K,V> e; //数组长度小于64时,选择扩容而不树化 if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) resize(); else if ((e = tab[index = (n - 1) & hash]) != null) { TreeNode<K,V> hd = null, tl = null; do { TreeNode<K,V> p = replacementTreeNode(e, null); if (tl == null) hd = p; else { p.prev = tl; tl.next = p; } tl = p; } while ((e = e.next) != null); if ((tab[index] = hd) != null) hd.treeify(tab); } }
二、ConcurrentHashMap
1.JDK1.7中的实现为Segment+HashEntry数组(每个Segment都相等于一个HashMap),Segment本身继承自ReentantLock,是ConcurrentHashMap线程安全的保证,锁的粒度为每个Segment,扩容操作rehash时也只是以自身Segment为单位进行rehash。
public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); //第一次hash定位到Segment,第二次hash定位到hashEntry的index。 int hash = hash(key); int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); return s.put(key, hash, value, false); } //Segment的put方法 final V put(K key, int hash, V value, boolean onlyIfAbsent) { //扫描加锁 HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value); V oldValue; try { HashEntry<K,V>[] tab = table; //取模定位到链表头结点 int index = (tab.length - 1) & hash; HashEntry<K,V> first = entryAt(tab, index); for (HashEntry<K,V> e = first;;) { //头结点不为空遍历链表,key值判等 if (e != null) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { //头插法第一步,尾部指向原先头结点 if (node != null) node.setNext(first); //头结点为空,先key,value存入 else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; //数量超过阈值,扩容(重哈希) if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); //头插法第二步,tab[index]=node else setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; }
总结:和1.7HashMap差不多,把原先的HashMap包装成可加锁的Segment,再由Segment数组组成ConcurrentHashMap,put时加锁
private void rehash(HashEntry<K,V> node) { HashEntry<K,V>[] oldTable = table; int oldCapacity = oldTable.length; int newCapacity = oldCapacity << 1; threshold = (int)(newCapacity * loadFactor); HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity]; int sizeMask = newCapacity - 1; for (int i = 0; i < oldCapacity ; i++) { HashEntry<K,V> e = oldTable[i]; if (e != null) { HashEntry<K,V> next = e.next; int idx = e.hash & sizeMask; //单个结点 if (next == null) // Single node on list newTable[idx] = e; else { // Reuse consecutive sequence at same slot HashEntry<K,V> lastRun = e; int lastIdx = idx; //遍历链表,计算每次rehash的值,找到最后一次相邻两个newIndex不同的时候,标记node和index for (HashEntry<K,V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } //把记录的node插入到链表newIndex头部 newTable[lastIdx] = lastRun; // Clone remaining nodes //从头遍历到记录的位置,依次rehash转移到newTable,头插法 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) { V v = p.value; int h = p.hash; int k = h & sizeMask; HashEntry<K,V> n = newTable[k]; newTable[k] = new HashEntry<K,V>(h, p.key, v, n); } } } } int nodeIndex = node.hash & sizeMask; // add the new node node.setNext(newTable[nodeIndex]); newTable[nodeIndex] = node; table = newTable; }
总结:因为rehash会有重复的(其实后来发现就两个值),那么把原链表尾部一段rehash相同的部分结点先切下来转移,再遍历链表剩下部分。
2.JDK1.8中的实现和HashMap相同为Node数组。线程安全方面则完全摒弃了1.7中的实现方案,新实现为Synchronized代码块+CAS,锁的粒度为每个Node节点。
final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode()); int binCount = 0; for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; if (tab == null || (n = tab.length) == 0) tab = initTable(); else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { //CAS乐观锁,如果Tab[i]的值为null则把new Node赋给Tab[i] if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; //遍历node结点时加锁 synchronized (f) { if (tabAt(tab, i) == f) { if (fh >= 0) { binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; //遍历key值判等 if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; if (!onlyIfAbsent) e.val = value; break; } Node<K,V> pred = e; //尾插法 if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } addCount(1L, binCount); return null; }
总结:和1.8的HashMap差距不大,定位到node节点时如果为空,使用CAS插入,不为空要遍历链表时使用Synchronized
private final void treeifyBin(Node<K,V>[] tab, int index) { Node<K,V> b; int n, sc; if (tab != null) { //一样的树化前判断数组长度是否小于64,小则扩容 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { //树化时加锁 synchronized (b) { if (tabAt(tab, index) == b) { TreeNode<K,V> hd = null, tl = null; for (Node<K,V> e = b; e != null; e = e.next) { TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } setTabAt(tab, index, new TreeBin<K,V>(hd)); } } } } }
JDK1.8ConcurrentHashMap扩容好难~下次补充。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· .NET10 - 预览版1新功能体验(一)