一道简单的数学题

题意:给定$n,k$,求$\sum_{i=1}^ni^k$。

柿子题。

根据二项式定理:

$$(n-1)^{k+1}=\sum_{r=0}^{k+1}\binom{k+1}{r}n^r\times (-1)^{k+1-r}$$

写出来:

$$(n-1)^{k+1}=n^{k+1}-\binom{k+1}{k}n^k + \sum_{r=0}^{k-1}\binom{k+1}{r}n^r\times (-1)^{k+1-r}$$

移项:

$$\binom{k+1}{k}n^k =n^{k+1}-(n-1)^{k+1}+ \sum_{r=0}^{k-1}\binom{k+1}{r}n^r\times (-1)^{k+1-r}$$

累加起来:

$$\binom{k+1}{k}\sum_{i=1}^ni^k =n^{k+1}+ \sum_{i=1}^n\sum_{r=0}^{k-1}\binom{k+1}{r}i^r\times (-1)^{k+1-r}$$

改变求和顺序:

$$\binom{k+1}{k}\sum_{i=1}^ni^k =n^{k+1}+ \sum_{r=0}^{k-1}\binom{k+1}{r}(-1)^{k+1-r}\sum_{i=1}^ni^r$$

完成!

O(klogk) ->  https://www.luogu.org/problem/CF622F

posted @ 2018-10-29 22:36  p0ny  阅读(270)  评论(0编辑  收藏  举报