好好爱自己!

Go: The Idea Behind Sync.Pool

 

原文:https://medium.com/swlh/go-the-idea-behind-sync-pool-32da5089df72

-----------------------

 

I encountered a problem in Go Garbage Collection inside a project of mine recently. A massive amount of object were allocated repeatedly and caused a huge workload of GC. Using sync.Pool I was able to decrease the allocations and GC workload.

What is sync.Pool?

Why to use sync.Pool?

How to use sync.Pool?

Due to New function type, which is func() interface{}Get method returns an interface{}. So you need to do a type assertion in order to get the concrete object

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
// A dummy struct
type Person struct {
    Name string
}
 
// Initializing pool
var personPool = sync.Pool{
    // New optionally specifies a function to generate
    // a value when Get would otherwise return nil.
    New: func() interface{} { return new(Person) },
}
 
// Main function
func main() {
    // Get hold of an instance
    newPerson := personPool.Get().(*Person)
    // Defer release function
    // After that the same instance is
    // reusable by another routine
    defer personPool.Put(newPerson)
 
    // Using the instance
    newPerson.Name = "Jack"
}

  

sync.Pool example

Benchmark

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
type Person struct {
    Age int
}
 
var personPool = sync.Pool{
    New: func() interface{} { return new(Person) },
}
 
func BenchmarkWithoutPool(b *testing.B) {
    var p *Person
    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        for j := 0; j < 10000; j++ {
            p = new(Person)
            p.Age = 23
        }
    }
}
 
func BenchmarkWithPool(b *testing.B) {
    var p *Person
    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        for j := 0; j < 10000; j++ {
            p = personPool.Get().(*Person)
            p.Age = 23
            personPool.Put(p)
        }
    }
}

  

sync.Pool benchmark

Benchmark result:

BenchmarkWithoutPool
BenchmarkWithoutPool-8 160698 ns/op 80001 B/op 10000 allocs/op
BenchmarkWithPool
BenchmarkWithPool-8 191163 ns/op 0 B/op 0 allocs/op

Trade-off

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
func BenchmarkPool(b *testing.B) {
    var p sync.Pool
    b.RunParallel(func(pb *testing.PB) {
        for pb.Next() {
            p.Put(1)
            p.Get()
        }
    })
}
 
func BenchmarkAllocation(b *testing.B) {
    b.RunParallel(func(pb *testing.PB) {
        for pb.Next() {
            i := 0
            i = i
        }
    })
}

  

Benchmarking sync.Pool and simple Allocation

Benchmark result:

BenchmarkPool
BenchmarkPool-8 283395016 4.40 ns/op
BenchmarkAllocation
BenchmarkAllocation-8 1000000000 0.344 ns/op
 

How does sync.Pool work?

According to the sync/pool.go , package init function registers to the runtime as a method to clean the pools. This method will be triggered by the GC.

func init() {
runtime_registerPoolCleanup(poolCleanup)
}

When the GC is triggered, objects inside the victim cache will be collected and then objects inside the local pool will be moved to the victim cache.

func poolCleanup() {
// Drop victim caches from all pools.
for _, p := range oldPools {
p.victim = nil
p.victimSize = 0
}

// Move primary cache to victim cache.
for _, p := range allPools {
p.victim = p.local
p.victimSize = p.localSize
p.local = nil
p.localSize = 0
}

oldPools, allPools = allPools, nil
}

New objects are put in the local pool. Calling Put method will put the object into the local pool as well. Calling Get method will take an object from the victim cache in the first place and if the victim cache was empty the object will be taken from the local pool.

 

 

sync.Pool localPool and victimCache

For your information, the Go 1.12 sync.Pool implementation uses a mutex based locking for thread-safe operations from multiple Goroutines. Go 1.13 introduces a doubly-linked list as a shared pool which removes the mutex lock and improves the shared access.

Conclusion

For your information, the Go 1.12 sync.Pool implementation uses a mutex based locking for thread-safe operations from multiple Goroutines. Go 1.13 introduces a doubly-linked list as a shared pool which removes the mutex lock and improves the shared access.

Conclusion

 

 

posted @   立志做一个好的程序员  阅读(103)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 25岁的心里话
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
历史上的今天:
2018-09-30 es6中的import,export浏览器已经支持
2016-09-30 Jquery 源码学习
2016-09-30 php 中的魔术方法-----“事件方法”
2016-09-30 php 语法中有 let 吗?

不断学习创作,与自己快乐相处

点击右上角即可分享
微信分享提示