递归

1 什么是函数的递归

函数的递归调用是函数嵌套调用的一种特殊形式,在调用一个函数的过程中又直接或者间接地调用该函数
    本身,称之为函数的递归调用

    递归调用必须有两个明确的阶段:
        1. 回溯: 一次次递归调用下去,说白了就一个重复的过程,但需要注意的是每一次重复问题的规模都应该有所减少,直到逼近一个最终的结果,即回溯阶段一定要有一个明确的结束条件
        2. 递推: 往回一层一层推算出结果
2 递归的应用
import sys
# print(sys.getrecursionlimit())
# sys.setrecursionlimit(2000)

# def foo(n):
#     print('from foo',n)
#     foo(n+1)
#
# foo(0)


# def bar():
#     print('from bar')
#     foo()
#
# def foo():
#     print('from foo')
#     bar()
#
# foo()

# age(5)=age(4)+2
# age(4)=age(3)+2
# age(3)=age(2)+2
# age(2)=age(1)+2
# age(1)=18
#
# age(n)=age(n-1)+2 #n>1
# age(n)=18         #n=1

 

递归调用就是一个重复的过程,但是每一次重复问题的规模都应该有所减少,并且应该在满足某种条件的情况下结束重复,开始进入递推阶段

def age(n):
    if n == 1:
        return 18
    return age(n-1)+2
print(age(5))

l=[1,[2,[3,[4,[5,[6,[7,[8,[9,[10,[11,]]]]]]]]]]] for item in l: if type(item) is not list: print(item) else: for i in item: print(i)

三元表达式

 

def max2(x,y):
  if x>y:
    return x
    else:
        return y

    return x if x>y else y

三元表达式实现的效果就是条件成立的情况下返回一个值,不成立的情况下返回另外一种值

res = 条件成立情况下返回的值 if 条件 else 条件不成立情况下返回的值

name-input('your name').strip()

res= 'SB' if name == 'andy' else 'NB'

print(res)

 

列表生成式与字典生成式
# names=['alex','lqz','yyh','fm']
# l=[]
# for name in names:
# res=name + '_DSB'
# l.append(res)
# print(l)

# l=[name + '_DSB' for name in names]
# print(l)

names=['alex_sb','lqz_sb','yyh_sb','fm_sb','egon']
# l=[]
# for name in names:
# if name.endswith('sb'):
# l.append(name)
# print(l)

# l=[name for name in names if name.endswith('sb')]
# print(l)

# items=[
# ('name','egon'),
# ('age',18),
# ('sex','male'),
# ]
# dic=dict(items)
# print(dic)


# 补充
# l=['a','b','c','d']
# for i,v in enumerate(l):
# print(i,v)

keys=['name','age','sex']
vals=['egon',18,'male']
dic={}
for i,k in enumerate(keys):
# print(i,k)
dic[k]=vals[i]
print(dic)

dic={k:vals[i] for i,k in enumerate(keys)}
print(dic)

dic={k:vals[i] for i,k in enumerate(keys) if i > 0}
print(dic)


# print({i:i for i in range(10)})
# print({i for i in range(10)})
print({i for i in 'hello'})
 
匿名函数

1 匿名函数:就是没有名字的函数

2 为何要用:
用于仅仅临时使用一次的场景,没有重复使用的需求



def sum2(x,y):
return x+y

# print(lambda x,y:x+y)
# print((lambda x,y:x+y)(1,2))

# 匿名函数的精髓就是没有名字,为其绑定名字是没有意义的
# f=lambda x,y:x+y
# print(f)
# print(f(1,2))

# 匿名函数与内置函数结合使用
# max,min,sorted,map,filter,reduce


salaries={
'egon':300000,
'alex':100000000,
'wupeiqi':10000,
'yuanhao':2000
}
# 求薪资最高的那个人名:即比较的是value,但取结果是key
# res=max(salaries)
# print(res)

# 可以通过max函数的key参数来改变max函数的比较依据,运行原理:
# max函数会“for循环”出一个值,然后将该值传给key指定的函数
# 调用key指定的函数,将拿到的返回值当作比较依据

# def func(name):
# # 返回一个人的薪资
# return salaries[name]
#
# res=max(salaries,key=func) #'egon'
# print(res)

# 求最大值
# res=max(salaries,key=lambda name:salaries[name]) #'egon'
# print(res)

# 求最小值
# res=min(salaries,key=lambda name:salaries[name]) #'egon'
# print(res)


# sorted排序
# nums=[11,33,22,9,31]
# res=sorted(nums,reverse=True)
# print(nums)
# print(res)
# salaries={
# 'egon':300000,
# 'alex':100000000,
# 'wupeiqi':10000,
# 'yuanhao':2000
# }
# for v in salaries.values():
# print(v)
# res=sorted(salaries.values())
# print(res)

# res=sorted(salaries,key=lambda name:salaries[name],reverse=True)
# print(res)


# map:把一个列表按照我们自定义的映射规则映射成一个新的列表
# names=['alex','lxx','wxx','yxx']
# res=map(lambda name: name + "dSB", names)
# print(list(res))

# filter: 从一个列表中过滤出符合我们过滤规则的值
# 运行原理:相当于for循环取出每一个人名,然后传给匿名函数,将调用匿名函数返回值为True的那个人名给留下来
# names=['alex_sb','lxx_sb','wxx_sb','egon','yxx']

# res=filter(lambda name:name.endswith('sb'),names)
# print(list(res))

# print([name for name in names if name.endswith('sb')])

# reduce: 把多个值合并成一个结果
from functools import reduce
l=['a','b','c','d']

# res=reduce(lambda x,y:x+y,l,'A')
#'A','a' => 'Aa'
#'Aa','b'=>'Aab'
#'Aab','c'=>'Aabc'
#'Aabc','d'=>'Aabcd'
# print(res)


# res=reduce(lambda x,y:x+y,l)
#'a','b'=>'ab'
# print(res)

# res=reduce(lambda x,y:x+y,range(1,101))
#1,2=>3
#3,3=>6
# print(res)

  

posted on 2019-02-21 20:15  Andy_ouyang  阅读(173)  评论(0编辑  收藏  举报