tensorflow以及卷积

毕业设计的时间来了,想整点厉害的东西,最近机器学习的一些操作把我惊艳到了,我决定开发一个表情识别系统
首先是框架的决定,我最开始在网上搜都是tensorflow,后来才发现pytorch是现在的主流,但是没办法,选了就得认真学


这是官方的对于tensorflow的说法

TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。

可以知道tensorflow其实就是通过张量来对输入属性进行操作的计算框架。
而如何进行机器学习呢?
首先需要搞懂什么是神经网络

了解神经网络的一个好方法是将它看作复合函数。
你输入一些数据,它会输出一些数据。3 个部分组成了神经网络的的基本架构:单元/神经元连接/权重/参数偏置项你可以把它们看作建筑物的「砖块」。根据你希望建筑物拥有的功能来安排砖块的位置。水泥是权重。无论权重多大,如果没有足够的砖块,建筑物还是会倒塌。然而,你可以让建筑以最小的精度运行(使用最少的砖块),然后逐步构建架构来解决问题。

而要使用神经网络来对图片进行训练的话,就应该使用卷积神经网络来进行训练,卷积神经网络大致可以化为下图


posted @ 2020-04-01 14:17  atmscp  阅读(90)  评论(0编辑  收藏  举报