勒让德多项式
1、勒让德方程及多项式
m阶n次连带勒让德方程:
\[\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\left[n(n+1)-\frac{m^{2}}{1-x^{2}}\right] y=0\quad m,n是非负整数,m\leq n
\]
m阶n次第一类连带勒让德函数(上述方程的解):
\[P_{n}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{d x^{m}} P_{n}(x)
\]
n次勒让德方程:
\[\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+\left[n(n+1)\right]y=0\quad m,n是非负整数,m\leq n
\]
n次勒让德函数包括两个基本解:
\[通解:y(x)=AP_n(x)+BQ_(x)\\\\
P_n(x)-n次第一类勒让德函数(多项式解)\\\\
Q_n(x)-n次第二类勒让德函数(无穷级数解)
\]
n次勒让德多项式:
n=0和正整数时,多项式解\(P_n(x)\)称为n次勒让德多项式
\[P_{n}(x)=\sum_{m=0}^{\left[\frac{n}{2}\right]}(-1)^{m} \frac{(2 n-2 m) !}{2^{n} m !(n-m) !(n-2 m) !} x^{n-2 m}
\]
\[\begin{array}{l}
p_{0}(x)=1, \quad p_{1}(x)=x,\quad p_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right) \\\\
p_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right),\quad p_{4}(x)=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)
\end{array}
\]
n次勒让德多项式\(P_n(x)\)的零点:\(P_n(x)\)=0的x值
零点性质:\(P_n(x)\)有n个不同的实零点;都在[-1,1]内;\(P_n(x)\)和\(P_n(-x)\)的零点互相穿插
\[Q_{n}(x)=P_{n}(x) \int_{x}^{\infty} \frac{d x}{\left(x^{2}-1\right)\left[p_{n}(x)\right]^{2}}=\frac{1}{2} \int_{-1}^{1} \frac{P_{n}(t)}{x-t} d t
\]
2、勒让德多项式的母函数
勒让德多项式的母函数:
\[G(x, z)=\frac{1}{\sqrt{1-2 x z+z^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) z^{n}
\]
勒让德多项式的递推公式:
\[\begin{array}{l}
(2 n+1) x P_{n}(x)-n P_{n-1}(x)=(n+1) P_{n+1}(x) \\ \\
n P_{n}(x)=x P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x) \\\\
(n+1) P_{n}(x)+x P_{n}^{\prime}(x)=P_{n+1}^{\prime}(x)
\end{array}
\]
例题:利用母函数证明\((2 n+1) P_{n}(x)=P_{n+1}^{\prime}(x)-P_{n-1}^{\prime}(x)\)
解:
\[\begin{array}{l}
G(x, z)=\frac{1}{\sqrt{1-2 x z+z^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) z^{n}\quad (两边对x求导)\\\\
-\frac{1}{2} \frac{-2 z}{\left(1-2 x z+z^{2}\right)^{3 / 2}}=\sum_{n=1}^{\infty} P_{n}(x) z^{n}\\ \\
\frac{z}{\left(1-2 x z+z^{2}\right)^{1 / 2}}=\left(1-2 x z+z^{2}\right) \sum_{n=1}^{\infty} P_{n}^{\prime}(x) z^{n}\\\\
z \sum_{n=0}^{\infty} P_{n}(x) z^{n}=\left(1-2 x z+z^{2}\right) \sum_{n=1}^{\infty} P_{n}^{\prime}(x) z^{n}\\\\
比较Z^{n+1}的系数得:\\\\P_{n}(x)=P_{n+1}^{\prime}(x)-2 x P_{n}^{\prime}(x)+P_{n-1}^{\prime}(x)
\end{array}
\]
3、勒让德多项式的性质
连带勒让德函数的性质:
1、\(P_n^m(x)\)的微分表达式:
\[P_{n}^{m}(x)=(-1)^{m}\left(1-x^{2}\right)^{\frac{m}{2}} P_{n}^{(m)}(x)=(-1)^{m} \frac{\left(1-x^{2}\right)^{m / 2}}{2^{n} n !} \frac{d^{n+m}}{d x^{n+m}}\left(x^{2}-1\right)^{n}
\]
2、\(P_n^m(x)\)的正交归一性
\[\begin{array}{l}
\int_{-1}^{1} P_{k}^{m}(x) P_{n}^{m}(x) d x=\left(N_{n}^{m}\right)^{2} \delta_{k n}=\frac{(n+m) !}{(n-m) !} \frac{2}{2 n+1} \delta_{k n}, \quad k, n=0,1,2 \cdots \\ \\
N_{n}^{m}=\sqrt{\frac{2}{2 n+1} \frac{(n+m) !}{(n-m) ! }}\quad N_{n}^{m} 是P_n^m(x)的模
\end{array}
\]
3、
\[P_{n}^{-m}(x)=(-1)^{m} \frac{(n-m) !}{(n+m) !} P_{n}^{m}(x)
\]
4、拉普拉斯方程在球形区域的Dirichlet问题
例题:在球r=a的内部求解\(\Delta u=0 \text {, }\)使其满足边界条件\(u \mid _{r=a}=\cos ^{2} \theta\)
解:列方程组如下:
\[\left\{\begin{array}{l}
\Delta u=0\quad (r<a) \\
u \mid _{r=a}=\cos ^{2} \theta \\
u \mid _{r=0}=\text {有限值 }
\end{array}\right.
\]
边界条件与\(\varphi\)无关,所以其解也应与\(\varphi\)无关(即m=0)
因为$u \mid _{r=0}=\text {有限值 } $,
\(u(r, \theta)=\sum_{n=0}^{\infty} A_{n} r^{n} P_{n}(\cos \theta)=\sum_{n=0}^{\infty} A_{n} r^{n} P_{n}(x)\)
因为\(U \mid _{r=a}=\sum_{n=0}^{\infty} A_{n} a^{n} P_{n}(x)=\cos ^{2} \theta=x^{2}\),
\(\sum_{n=0}^{\infty} A n a^{n} p_{n}(x)=A_{0} a^{0} p_{0}(x)+A_{1} a^{\prime} p_{1}(x)+A_{2} a^{2} p_{2}(x)=A_{0}+A_{1} a x+A_{2} a^{2} \frac{1}{2}\left(3 x^{2}-1\right)=x^{2}\)
故 \(\left\{\begin{array}{l}
A_{0}-\frac{1}{2} A_{2} a^{2}=0 \\
A_{1} a=0 \\
\frac{3}{2} A_{2} a^{2}=1
\end{array}\right.\) 解得:\(\left\{\begin{array}{l}
A_{0}=\frac{1}{3} \\
A_{1}=0 \\
A_{2}=\frac{2}{3} a^{-2}
\end{array}\right.\)
由以上可得:\(\begin{aligned}
u(r, \theta) &=\frac{1}{3}+\frac{2}{3} a^{-2} r^{2} P_{2}(x)
=\frac{1}{3}+\frac{2}{3} a^{-2} r^{2} P_{2}(\cos \theta)
\end{aligned}\)
整理人:刘蓓
审核:辅助线数学公益平台