神经网络入门篇:详解为什么需要非线性激活函数?(why need a nonlinear activation function?)

为什么需要非线性激活函数?

为什么神经网络需要非线性激活函数?事实证明:要让的神经网络能够计算出有趣的函数,必须使用非线性激活函数,证明如下:

这是神经网络正向传播的方程,现在去掉函数g,然后令a[1]=z[1],或者也可以令g(z)=z,这个有时被叫做线性激活函数(更学术点的名字是恒等激励函数,因为它们就是把输入值输出)。为了说明问题把a[2]=z[2],那么这个模型的输出y或仅仅只是输入特征x的线性组合。

如果改变前面的式子,令:
(1) a[1]=z[1]=W[1]x+b[1]

(2) a[2]=z[2]=W[2]a[1]+b[2]

将式子(1)代入式子(2)中,则:

a[2]=z[2]=W[2](W[1]x+b[1])+b[2]

(3) $a^{[2]} = z^{[2]} = W{[2]}Wx + W{[2]}b + b^{[2]} $

简化多项式得
a[2]=z[2]=Wx+b
如果是用线性激活函数或者叫恒等激励函数,那么神经网络只是把输入线性组合再输出。

稍后会谈到深度网络,有很多层的神经网络,很多隐藏层。事实证明,如果使用线性激活函数或者没有使用一个激活函数,那么无论的神经网络有多少层一直在做的只是计算线性函数,所以不如直接去掉全部隐藏层。在的简明案例中,事实证明如果在隐藏层用线性激活函数,在输出层用sigmoid函数,那么这个模型的复杂度和没有任何隐藏层的标准Logistic回归是一样的,如果愿意的话,可以证明一下。

在这里线性隐层一点用也没有,因为这两个线性函数的组合本身就是线性函数,所以除非引入非线性,否则无法计算更有趣的函数,即使的网络层数再多也不行;只有一个地方可以使用线性激活函数------g(z)=z,就是在做机器学习中的回归问题。y是一个实数,举个例子,比如想预测房地产价格,y 就不是二分类任务0或1,而是一个实数,从0到正无穷。如果y是个实数,那么在输出层用线性激活函数也许可行,的输出也是一个实数,从负无穷到正无穷。

总而言之,不能在隐藏层用线性激活函数,可以用ReLU或者tanh或者leaky ReLU或者其他的非线性激活函数,唯一可以用线性激活函数的通常就是输出层;除了这种情况,会在隐层用线性函数的,除了一些特殊情况,比如与压缩有关的,那方面在这里将不深入讨论。在这之外,在隐层使用线性激活函数非常少见。因为房价都是非负数,所以也可以在输出层使用ReLU函数这样的y^都大于等于0。

故理解为什么使用非线性激活函数对于神经网络十分关键

posted @   Oten  阅读(510)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示