opencv::分水岭图像分割
分水岭分割方法原理 (3种) - 基于浸泡理论的分水岭分割方法 (距离) - 基于连通图的方法 - 基于距离变换的方法 图像形态学操作: - 腐蚀与膨胀 - 开闭操作 分水岭算法运用 - 分割粘连对象,实现形态学操作与对象计数 - 图像分割
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread("D:/images/coins_001.jpg"); if (src.empty()) { printf("could not load image...\n"); return -1; } namedWindow("input image", CV_WINDOW_AUTOSIZE); imshow("input image", src); Mat gray, binary, shifted; pyrMeanShiftFiltering(src, shifted, 21, 51); //imshow("shifted", shifted); //灰度 cvtColor(shifted, gray, COLOR_BGR2GRAY); threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU); //imshow("binary", binary); // 距离变换 Mat dist; distanceTransform(binary, dist, DistanceTypes::DIST_L2, 3, CV_32F); normalize(dist, dist, 0, 1, NORM_MINMAX); //imshow("distance result", dist); // 二值化 threshold(dist, dist, 0.4, 1, THRESH_BINARY); //imshow("distance binary", dist); // markers Mat dist_m; dist.convertTo(dist_m, CV_8U); vector<vector<Point>> contours; findContours(dist_m, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0)); // create markers Mat markers = Mat::zeros(src.size(), CV_32SC1); for (size_t t = 0; t < contours.size(); t++) { drawContours(markers, contours, static_cast<int>(t), Scalar::all(static_cast<int>(t) + 1), -1); } circle(markers, Point(5, 5), 3, Scalar(255), -1); //imshow("markers", markers*10000); // 形态学操作 - 彩色图像,目的是去掉干扰,让结果更好 Mat k = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1)); morphologyEx(src, src, MORPH_ERODE, k); // 完成分水岭变换 watershed(src, markers); Mat mark = Mat::zeros(markers.size(), CV_8UC1); markers.convertTo(mark, CV_8UC1); bitwise_not(mark, mark, Mat()); //imshow("watershed result", mark); // generate random color vector<Vec3b> colors; for (size_t i = 0; i < contours.size(); i++) { int r = theRNG().uniform(0, 255); int g = theRNG().uniform(0, 255); int b = theRNG().uniform(0, 255); colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r)); } // 颜色填充与最终显示 Mat dst = Mat::zeros(markers.size(), CV_8UC3); int index = 0; for (int row = 0; row < markers.rows; row++) { for (int col = 0; col < markers.cols; col++) { index = markers.at<int>(row, col); if (index > 0 && index <= contours.size()) { dst.at<Vec3b>(row, col) = colors[index - 1]; } else { dst.at<Vec3b>(row, col) = Vec3b(0, 0, 0); } } } imshow("Final Result", dst); printf("number of objects : %d\n", contours.size()); waitKey(0); return 0; }
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; Mat watershedCluster(Mat &image, int &numSegments); void createDisplaySegments(Mat &segments, int numSegments, Mat &image); int main(int argc, char** argv) { Mat src = imread("D:/images/cvtest.png"); if (src.empty()) { printf("could not load image...\n"); return -1; } namedWindow("input image", CV_WINDOW_AUTOSIZE); imshow("input image", src); int numSegments; Mat markers = watershedCluster(src, numSegments); createDisplaySegments(markers, numSegments, src); waitKey(0); return 0; } Mat watershedCluster(Mat &image, int &numComp) { // 二值化 Mat gray, binary; cvtColor(image, gray, COLOR_BGR2GRAY); //阈值 threshold(gray, binary, 0, 255, THRESH_BINARY | THRESH_OTSU); // 形态学与距离变换 Mat k = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1)); morphologyEx(binary, binary, MORPH_OPEN, k, Point(-1, -1)); Mat dist; distanceTransform(binary, dist, DistanceTypes::DIST_L2, 3, CV_32F); normalize(dist, dist, 0.0, 1.0, NORM_MINMAX); // 开始生成标记 threshold(dist, dist, 0.1, 1.0, THRESH_BINARY); normalize(dist, dist, 0, 255, NORM_MINMAX); dist.convertTo(dist, CV_8UC1); // 标记开始 vector<vector<Point>> contours; vector<Vec4i> hireachy; findContours(dist, contours, hireachy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); if (contours.empty()) { return Mat(); } Mat markers(dist.size(), CV_32S); markers = Scalar::all(0); for (int i = 0; i < contours.size(); i++) { drawContours(markers, contours, i, Scalar(i + 1), -1, 8, hireachy, INT_MAX); } //填充 circle(markers, Point(5, 5), 3, Scalar(255), -1); // 分水岭变换 watershed(image, markers); numComp = contours.size(); return markers; } void createDisplaySegments(Mat &markers, int numSegments, Mat &image) { // generate random color vector<Vec3b> colors; for (size_t i = 0; i < numSegments; i++) { int r = theRNG().uniform(0, 255); int g = theRNG().uniform(0, 255); int b = theRNG().uniform(0, 255); colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r)); } // 颜色填充与最终显示 Mat dst = Mat::zeros(markers.size(), CV_8UC3); int index = 0; for (int row = 0; row < markers.rows; row++) { for (int col = 0; col < markers.cols; col++) { index = markers.at<int>(row, col); if (index > 0 && index <= numSegments) { dst.at<Vec3b>(row, col) = colors[index - 1]; } else { dst.at<Vec3b>(row, col) = Vec3b(255, 255, 255); } } } imshow("分水岭图像分割-演示", dst); return; }