opencv实践::直线检测
问题描述
寻找英语试卷填空题的下划线,这个对后期的切图与自动 识别都比较重要。
解决思路
方法: 通过图像形态学操作来寻找直线,霍夫获取位置信息与显示。
#include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespace cv; using namespace std; #define IMAGE_PATH "D:/case3.png" int max_count = 255; int threshold_value = 100; const char* output_lines = "Hough Lines"; Mat src, roiImage, dst; void morhpologyLines(int, void*); int main(int argc, char** argv) { src = imread(IMAGE_PATH, IMREAD_GRAYSCALE); if (src.empty()) { printf("could not load image...\n"); return -1; } namedWindow("input image", CV_WINDOW_AUTOSIZE); imshow("input image", src); namedWindow(output_lines, CV_WINDOW_AUTOSIZE); Rect roi = Rect(10, 10, src.cols - 20, src.rows - 20); roiImage = src(roi); //imshow("ROI image", roiImage); morhpologyLines(0, 0); waitKey(0); return 0; } void morhpologyLines(int, void*) { // 二值化 Mat binaryImage, morhpImage; // 图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。 threshold(roiImage, binaryImage, 0, 255, THRESH_BINARY_INV | THRESH_OTSU); //imshow("binary", binaryImage); // 定义一个结构元素 宽40像素,高1像素 Mat kernel = getStructuringElement(MORPH_RECT, Size(40, 1), Point(-1, -1)); morphologyEx(binaryImage, morhpImage, MORPH_OPEN, kernel, Point(-1, -1)); //imshow("morphology result", morhpImage); // 膨胀强化直线 kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1)); dilate(morhpImage, morhpImage, kernel); //imshow("morphology lines", morhpImage); // 霍夫直线标定 vector<Vec4i> lines; HoughLinesP(morhpImage, lines, 1, CV_PI / 180.0, 30, 20.0, 0); Mat resultImage = roiImage.clone(); cvtColor(resultImage, resultImage, COLOR_GRAY2BGR); for (size_t t = 0; t < lines.size(); t++) { Vec4i ln = lines[t]; line(resultImage, Point(ln[0], ln[1]), Point(ln[2], ln[3]), Scalar(0, 0, 255), 2, 8, 0); } imshow(output_lines, resultImage); return; }