JS-AStar算法

算法的思想详解请看下面链接

https://blog.csdn.net/windcao/article/details/1533879

下面是转载的另一种实现方式

https://blog.csdn.net/liebert/article/details/79672425

 

个人的理解

启发式的算法

每次选择最短路径 F = G + H,其中,F 是从起点经过该点到终点的总路程,G 为起点到该点的“已走路程”,H 为该点到终点的“预计路程”。

(我习惯采用曼哈顿距离)F = Math.abs(end_node.s_x - start_node.s_x) + Math.abs(end_node.s_y - start_node.s_y);

算法的关键是维护开启列表,每次你访问开启列表,你都需要寻找F值最低的方格

 

思想

// 0. 初始化01地图

// 1. 从起点A开始, 把它作为待处理的方格存入一个"开启列表", 开启列表就是一个等待检查方格的列表.

// 2. 寻找起点A周围可以到达的方格, 将它们放入"开启列表", 并设置它们的"父方格"为A.

// 3. 从"开启列表"中删除起点 A, 并将起点 A 加入"关闭列表", "关闭列表"中存放的都是不需要再次检查的方格

// 4. 从 "开启列表" 中选择 F 值最低的方格 C (绿色起始方块 A 右边的方块),检查它所有相邻并且可以到达 (障碍物和 "关闭列表" 的方格都不考虑) 的方格.

  如果这些方格还不在 "开启列表" 里的话, 将它们加入 "开启列表", 计算这些方格的 G, H 和 F 值各是多少, 并设置它们的 "父方格" 为 C.

// 5. 如果某个相邻方格 D 已经在 "开启列表" 里了, 检查如果用新的路径 (就是经过C 的路径) 到达它的话, G值是否会更低一些,

  如果新的G值更低, 那就把它的 "父方格" 改为目前选中的方格 C, 然后重新计算它的 F 值和 G 值 (H 值不需要重新计算, 因为对于每个方块, H 值是不变的).

  如果新的 G 值比较高, 就说明经过 C 再到达 D 不是一个明智的选择, 因为它需要更远的路, 这时我们什么也不做.

// 就这样, 我们从 "开启列表" 找出 F 值最小的, 将它从 "开启列表" 中移掉, 添加到 "关闭列表". 再继续找出它周围可以到达的方块, 如此循环下去...

// 那么什么时候停止呢? —— 当我们发现 "开始列表" 里出现了目标终点方块的时候, 说明路径已经被找到.

// 最后以终点为起点通过 "父方块" 可以依次索引到最初的 "起始方块", 这样就得到了路径

// astar算法 模仿blake老师的写法,用来熟悉算法

var map_maze = []; // 场景节点顺序保存数组
var open_table = []; // 开启列表
var close_table = []; // 关闭列表
var path_stack = []; // 保存路径

var is_found = 0; // 是否找到路径 1 true 0 false
var open_node_count = 0; // 开启列表元素个数
var close_node_count = 0; // 关闭列表元素个数
var top = -1; // path_stack从后往前变量指针

var map_height = 0; //地图高度
var map_width = 0; // 地图宽度
var BARRIER = 1; // 阻挡标记

function swap(idx1, idx2) {
    var tmp = open_table[idx1];
    open_table[idx1] = open_table[idx2];
    open_table[idx2] = tmp;
}

function adjust_heap(nIndex){
    var curr = nIndex;
    var child = curr * 2 - 1; // 得到左孩子idx( 下标从0开始,所有做孩子是curr*2+1 )
    var parent = Math.floor((curr - 1) / 2); // 得到双亲idx  
    if(nIndex < 0 || nIndex >= open_node_count){
        return;
    }

    // 往下调整( 要比较左右孩子和cuur parent )  
    while(child < open_node_count){
        if(child + 1 < open_node_count && 
            open_table[child].s_g + open_table[child].s_h > open_table[child + 1].s_g + open_table[child + 1].s_h){
            ++child; // 判断左右孩子大小  
        }

        if (open_table[curr].s_g + open_table[curr].s_h <= open_table[child].s_g + open_table[child].s_h) {
            break;
        }else{
            swap(child, curr); // 交换节点  
            curr = child;// 再判断当前孩子节点  
            child = curr * 2 + 1; // 再判断左孩子  
        }
    }

    if (curr != nIndex) {
        return;
    }

    // 往上调整( 只需要比较cuur child和parent )  
    while (curr != 0) {
        if (open_table[curr].s_g + open_table[curr].s_h >= open_table[parent].s_g + open_table[parent].s_h) {
            break;
        } else {
            swap(curr, parent);
            curr = parent;
            parent = Math.floor((curr - 1) / 2);
        }
    }
}

function insert_to_opentable(x, y, curr_node, end_node, w){ // w损耗
    var i;
    if (map_maze[x * map_width + y].s_style != BARRIER){ // 不是障碍物 
        if (!map_maze[x * map_width + y].s_is_in_closetable){ // 不在闭表中  
            if (map_maze[x * map_width + y].s_is_in_opentable){ // 在open表中 
                // 需要判断是否是一条更优化的路径  
                // 检查如果用新的路径 (就是经过C 的路径) 到达它的话, G值是否会更低一些, 
                // 如果新的G值更低, 那就把它的 "父方格" 改为目前选中的方格 C, 
                // 然后重新计算它的 F 值和 G 值 (H 值不需要重新计算, 因为对于每个方块, H 值是不变的). 
                // 如果新的 G 值比较高, 就说明经过 C 再到达 D 不是一个明智的选择, 因为它需要更远的路, 这时我们什么也不做.
                if (map_maze[x * map_width + y].s_g > curr_node.s_g + w){ //如果更优化
                    map_maze[x * map_width + y].s_g = curr_node.s_g + w;
                    map_maze[x * map_width + y].s_parent = curr_node;

                    for (i = 0; i < open_node_count; ++i) {
                        if (open_table[i].s_x == map_maze[x * map_width + y].s_x && open_table[i].s_y == map_maze[x * map_width + y].s_y) {
                            break;
                        }
                    }

                    adjust_heap(i); // 下面调整点  
                }
            }else{// 不在open中  
                map_maze[x * map_width + y].s_g = curr_node.s_g + w;
                map_maze[x * map_width + y].s_h = Math.abs(end_node.s_x - x) + Math.abs(end_node.s_y - y);
                map_maze[x * map_width + y].s_parent = curr_node;
                map_maze[x * map_width + y].s_is_in_opentable = 1;
                open_table[open_node_count++] = (map_maze[x * map_width + y]);
            }
        }
    }  
}

// 邻居处理
function get_neighbors(curr_node, end_node) {
    var x = curr_node.s_x;
    var y = curr_node.s_y;

    // 下面对于8个邻居进行处理!  
    //  直线损耗10 斜线损耗14
    if ((x + 1) >= 0 && (x + 1) < map_height && y >= 0 && y < map_width) {
        insert_to_opentable(x + 1, y, curr_node, end_node, 10);
    }

    if ((x - 1) >= 0 && (x - 1) < map_height && y >= 0 && y < map_width) {
        insert_to_opentable(x - 1, y, curr_node, end_node, 10);
    }

    if (x >= 0 && x < map_height && (y + 1) >= 0 && (y + 1) < map_width) {
        insert_to_opentable(x, y + 1, curr_node, end_node, 10);
    }

    if (x >= 0 && x < map_height && (y - 1) >= 0 && (y - 1) < map_width) {
        insert_to_opentable(x, y - 1, curr_node, end_node, 10);
    }

    if ((x + 1) >= 0 && (x + 1) < map_height && (y + 1) >= 0 && (y + 1) < map_width) {
        insert_to_opentable(x + 1, y + 1, curr_node, end_node, 10 + 4);
    }

    if ((x + 1) >= 0 && (x + 1) < map_height && (y - 1) >= 0 && (y - 1) < map_width) {
        insert_to_opentable(x + 1, y - 1, curr_node, end_node, 10 + 4);
    }

    if ((x - 1) >= 0 && (x - 1) < map_height && (y + 1) >= 0 && (y + 1) < map_width) {
        insert_to_opentable(x - 1, y + 1, curr_node, end_node, 10 + 4);
    }

    if ((x - 1) >= 0 && (x - 1) < map_height && (y - 1) >= 0 && (y - 1) < map_width) {
        insert_to_opentable(x - 1, y - 1, curr_node, end_node, 10 + 4);
    }
}

// 0. 初始化01地图

// 1. 从起点A开始, 把它作为待处理的方格存入一个"开启列表", 开启列表就是一个等待检查方格的列表.

// 2. 寻找起点A周围可以到达的方格, 将它们放入"开启列表", 并设置它们的"父方格"为A.

// 3. 从"开启列表"中删除起点 A, 并将起点 A 加入"关闭列表", "关闭列表"中存放的都是不需要再次检查的方格

// 4. 从 "开启列表" 中选择 F 值最低的方格 C (绿色起始方块 A 右边的方块),检查它所有相邻并且可以到达 (障碍物和 "关闭列表" 的方格都不考虑) 的方格. 如果这些方格还不在 "开启列表" 里的话, 将它们加入 "开启列表", 计算这些方格的 G, H 和 F 值各是多少, 并设置它们的 "父方格" 为 C.

// 5. 如果某个相邻方格 D 已经在 "开启列表" 里了, 检查如果用新的路径 (就是经过C 的路径) 到达它的话, G值是否会更低一些, 如果新的G值更低, 那就把它的 "父方格" 改为目前选中的方格 C, 然后重新计算它的 F 值和 G 值 (H 值不需要重新计算, 因为对于每个方块, H 值是不变的). 如果新的 G 值比较高, 就说明经过 C 再到达 D 不是一个明智的选择, 因为它需要更远的路, 这时我们什么也不做.

// 就这样, 我们从 "开启列表" 找出 F 值最小的, 将它从 "开启列表" 中移掉, 添加到 "关闭列表". 再继续找出它周围可以到达的方块, 如此循环下去...

// 那么什么时候停止呢? —— 当我们发现 "开始列表" 里出现了目标终点方块的时候, 说明路径已经被找到.

// 最后以终点为起点通过 "父方块" 可以依次索引到最初的 "起始方块", 这样就得到了路径


// 0.(此处是否可优化下map_maze的初始化,不必每次都清空push一次???)
function astar_init(map){
    open_table = [];
    close_table = [];
    path_stack = [];
    map_maze = [];

    map_height = map.height;
    map_width = map.width;

    is_found = 0;
    open_node_count = 0;
    close_node_count = 0;
    top = -1;

    for (var i = 0; i < map.length; i++){
        for(var j = 0; j < map.width; j++){
            var node = {};
            // F = G + H 其中,F 是从起点经过该点到终点的总路程,G 为起点到该点的“已走路程”,H 为该点到终点的“预计路程”。
            node.s_g = 0; // g值
            node.s_h = 0;
            node.s_is_in_closetable = 0;
            node.s_is_in_opentable = 0;
            node.s_style = map.data[i * map.width + j]; // 数据类型 0 1
            node.s_x = i;
            node.s_y = j;
            node.s_parent = null;
            map_maze.push(node);

            path_stack.push(null);
            open_table.push(null);
            close_table.push(null);
        }
    }
}

// 1. A*核心代码
function astar_search(map, src_x, src_y, dst_x, dst_y){
    var path = [];
    if(src_x == dst_x && src_y == dst_y){
        console.log("起点==终点!");
        return path;
    }

    // 初始化map
    astar_init(map);

    //1. 从起点A开始, 把它作为待处理的方格存入一个"开启列表", 开启列表就是一个等待检查方格的列表.
    var start_node = map_maze[src_y * map.width + src_x];
    var end_node = map_maze[dst_y * map.width + dst_x];
    var curr_node = null;

    open_table[open_node_count++] = start_node;

    start_node.s_is_in_opentable = 1; // 加入open表
    start_node.s_g = 0;
    // 曼哈顿距离
    start_node.s_h = Math.abs(end_node.s_x - start_node.s_x) + Math.abs(end_node.s_y - start_node.s_y);
    start_node.s_parent = null;

    is_found = 0;

    while(1){
        curr_node = open_table[0]; // open表的第一个点一定是f值最小的点(通过堆排序得到的)  
        open_table[0] = open_table[--open_node_count]; // 最后一个点放到第一个点,然后进行堆调整  
        adjust_heap(0); // 调整堆

        close_table[close_node_count++] = curr_node; // 当前点加入close表  
        curr_node.s_is_in_closetable = 1; // 已经在close表中了 

        if (curr_node.s_x == end_node.s_x && curr_node.s_y == end_node.s_y) // 终点在close中,结束  
        {
            is_found = 1;
            break;
        }

        get_neighbors(curr_node, end_node); // 对邻居的处理  


        if (open_node_count == 0) // 没有路径到达  
        {
            is_found = 0;
            break;
        }
    }    

    if(is_found){
        curr_node = end_node;

        while(curr_node){
            path_stack[++top] = curr_node;
            curr_node = curr_node.s_parent;
        }

        while (top >= 0) // 下面是输出路径看看~  
        {
            console.log(path_stack[top].s_y, path_stack[top].s_x);
            path.push(cc.v2(path_stack[top].s_y, path_stack[top].s_x));
            top--;
        }
    }else{
        console.log("么有找到路径");    
    }
    return path;
}

module.exports = {
    search: astar_search,
};

 

posted @ 2019-03-19 16:01  orxx  阅读(1256)  评论(0编辑  收藏  举报