Codeforces 761D - Dasha and Very Difficult Problem(水题)

D. Dasha and Very Difficult Problem
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Dasha logged into the system and began to solve problems. One of them is as follows:

Given two sequences a and b of length n each you need to write a sequence c of length n, the i-th element of which is calculated as follows: ci = bi - ai.

About sequences a and b we know that their elements are in the range from l to r. More formally, elements satisfy the following conditions: l ≤ ai ≤ r and l ≤ bi ≤ r. About sequence c we know that all its elements are distinct.

Dasha wrote a solution to that problem quickly, but checking her work on the standard test was not so easy. Due to an error in the test system only the sequence a and the compressed sequence of the sequence c were known from that test.

Let's give the definition to a compressed sequence. A compressed sequence of sequence c of length n is a sequence p of length n, so that pi equals to the number of integers which are less than or equal to ci in the sequence c. For example, for the sequencec = [250, 200, 300, 100, 50] the compressed sequence will be p = [4, 3, 5, 2, 1]. Pay attention that in c all integers are distinct. Consequently, the compressed sequence contains all integers from 1 to n inclusively.

Help Dasha to find any sequence b for which the calculated compressed sequence of sequence c is correct.

Input

The first line contains three integers nlr (1 ≤ n ≤ 105, 1 ≤ l ≤ r ≤ 109) — the length of the sequence and boundaries of the segment where the elements of sequences a and b are.

The next line contains n integers a1,  a2,  ...,  an (l ≤ ai ≤ r) — the elements of the sequence a.

The next line contains n distinct integers p1,  p2,  ...,  pn (1 ≤ pi ≤ n) — the compressed sequence of the sequence c.

Output

If there is no the suitable sequence b, then in the only line print "-1".

Otherwise, in the only line print n integers — the elements of any suitable sequence b.

Examples
input
5 1 5
1 1 1 1 1
3 1 5 4 2
output
3 1 5 4 2 
input
4 2 9
3 4 8 9
3 2 1 4
output
2 2 2 9 
input
6 1 5
1 1 1 1 1 1
2 3 5 4 1 6
output
-1
Note

Sequence b which was found in the second sample is suitable, because calculated sequencec = [2 - 3, 2 - 4, 2 - 8, 9 - 9] = [ - 1,  - 2,  - 6, 0] (note that ci = bi - ai) has compressed sequence equals to p = [3, 2, 1, 4].

 

很水,直接上代码:

#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1e5 + 5;
int a[maxn], p[maxn],b[maxn];
int main()
{
    int n, l, r;
    while (cin >> n >> l >> r)
    {
        int i;
        for (i = 0; i < n; i++)
            cin >>a[i];
        for (i = 0; i < n; i++)
            cin >> p[i];
        int max = 0, min = 1e9 + 10;
        for (i = 0; i < n; i++)
        {
            b[i] = a[i] + p[i];
            if (b[i] < min)
                min = b[i];
            if (b[i] > max)
                max = b[i];
        }
        if (max > r + min - l)
            cout << "-1" << endl;
        else
        {
            for (i = 0; i < n; i++)
                cout << b[i] - min + l << " ";
            cout << endl;
        }
    }
    return 0;
}

 

posted @ 2017-06-02 18:41  Zireael  阅读(222)  评论(0编辑  收藏  举报