摘要:
我们在上一篇博客中介绍了合情推理中所要满足的合情条件。在这一篇博客中我们将看到,上述条件皆不是空穴来风,而且不多不少刚刚好。一旦我们导出了满足上述合情条件的合情推理定量规则,我们就会发现,我们实际上就得到了概率的原始定义(乘法规则 + 加法规则 + 无差别原则)。其中,条件(Ⅰ)(Ⅱ)(Ⅲa)是机器人大脑的“结构性”条件,决定了推理机器人大脑的内部运作规则(这里的“大脑”可以指电路 / 神经网络 / ...),导出概率的乘法规则(product rule):p(AB | C) = p(A | C)p(B | AC)=p(B | C)p(A | BC)和加法规则(sum rule):p(A | B) + p(非A | B) = 1(p(x)是任意连续单调递增函数,值域为0 <= p(x) <= 1)而条件(Ⅲb)(Ⅲc)是“接口”条件,进一步建立了推理机器人与客观世界的联系。其中,(Ⅲc)导出概率的无差别原则(principle of indifference):p(A_i | B) = 1 / n, 1 <= i <= n。 阅读全文