摘要:
图对比学习(Graph Contrastive Learning, GCL)旨在以自监督的方式学习图的节点表征。具体而言,先以特定方式对原图A进行增广,得到两个增广后的视图(view)V1和V2做为对比对(也可以是原图和增广后的视图做为对比对),并经由GCN进行编码得到两个增广视图中的节点embeddings。接着,对于某个目标节点i,我们需要使其在某个增广视图中的embedding去接近在另一个增广视图中的正样本embedding,而远离负样本embedding。不过,均匀随机的边扰动很难做为有效的增广来使用,这启发我们去构思比均匀扰动更好的图增广方法。我们知道图谱可以做为许多图的结构属性的一个综合性总结,包括聚类系数、连通性等等。那么,基于图谱的图增广方法就是顺理成章的了。 阅读全文