会员
周边
众包
新闻
博问
闪存
赞助商
所有博客
当前博客
我的博客
我的园子
账号设置
简洁模式
...
退出登录
注册
登录
Orion's Blog
联邦学习、图机器学习、推荐系统
博客园
首页
新随笔
联系
订阅
管理
2022年6月11日
数值优化:经典一阶确定性算法及其收敛性分析
摘要:
我们在上一篇博客中介绍了数值优化算法的历史发展、分类及其收敛性/复杂度分析基础。本篇博客我们重点关注一阶确定性优化算法及其收敛性分析。梯度下降法的基本思想是:最小化目标函数在当前迭代点处的一阶泰勒展开,从而近似地优化目标函数本身。具体地,对函数 𝑓:ℝ𝑛→ℝ ,将其在第 t 轮迭代点 𝑤𝑡处求解最小化问题。梯度下降法有两个局限,一是只适用于无约束优化问题,二是只适用于梯度存在的目标函数。投影次梯度法可以解决梯度下降法的这两个局限性。
阅读全文
posted @ 2022-06-11 22:24 orion-orion
阅读(2335)
评论(0)
推荐(1)
编辑
公告