摘要: 多任务学习中的数据分布问题 今天这个专题源于我在做联邦/分布式多任务学习实验时在选取数据集的时候的疑惑,以下我们讨论多任务学习中(尤其是在分布式的环境下)如何选择数据集和定义任务。多任务学习最初的定义是:"多任务学习是一种归纳迁移机制,基本目标是提高泛化性能。多任务学习通过相关任务训练信号中的领域特定信息来提高泛化能力,利用共享表示采用并行训练的方法学习多个任务"。然而其具体实现手段却有许多(如基于神经网络的和不基于神经网络的,这也是容易让人糊涂的地方),但是不管如何,其关键点——**共享表示**是核心。 阅读全文
posted @ 2021-11-29 22:50 orion-orion 阅读(847) 评论(1) 推荐(2) 编辑