摘要: 分布式多任务学习:论文总结归纳和展望 做为最后一篇分布式多任务学习的论文阅读记录,我决定对我目前为止粗读和精读的论文进行一次总结,然后陈述一些个人对该研究领域的见解和想法。目前已经有许多论文对多任务学习提出了并行化策略,我们可以大致概括如下几类:(1) 基于近端梯度的同步算法 (2) 基于近端梯度的异步算法 (3) 基于分解代理损失函数的算法 (4) 基于本地去偏估计的算法。⽬前关于不同的损失函数和不同的正则项已经有很多学者做过了,不过⽬前基于任务簇/层次化的多任务学习⽅法还没有⼈对专门其并⾏化。 阅读全文
posted @ 2021-11-12 21:02 orion-orion 阅读(1731) 评论(1) 推荐(1) 编辑