统计学习:线性可分支持向量机(Cvxpy实现)

1. 模型

1.1 超平面

我们称下面形式的集合为超平面

\[\begin{aligned} \{ \bm{x} | \bm{a}^{T} \bm{x} - b = 0 \} \end{aligned} \tag{1} \]

其中\(\bm{a} \in \mathbb{R}^n\)\(\bm{a} \ne \bm{0} , \bm{x}\in \mathbb{R}^n, b \in \mathbb{R}\)。解析地看,超平面是关于\(\bm{x}\)的非平凡线性方程的解空间(因此是一个仿射集,仿射集和凸集的概念参考Stephen Boyd的《凸优化》)从几何上看,它的的法向量为\(\bm{a}\),而常数\(b\in \mathbb{R}\)决定了这个超平面从原点的偏移。这如何得到的呢?这是因为,若我们由法向量\(\bm{a}\)和超平面上一点\(\bm{x}_{0}\)确定超平面,则对超平面上任意一点\(\bm{x}\),我们可以得到\(\bm{x} - \bm{x}_0\)一定垂直于\(\bm{a}\),则超平面的集合便可以表示为

\[\begin{aligned} \{\bm{x} | \bm{a}^{T} (\bm{x} - \bm{x}_0) = 0\} \end{aligned} \tag{2} \]

\(\mathbb{R}^2\)中的几何化的解释如下图所示,其中深色箭头表示\(\bm{x} - \bm{x}_0\)

超平面几何示意图

一个超平面将\(\mathbb{R}^n\)划分为两个半空间,(闭的)半空间是具有下列形式的集合:

\[\begin{aligned} \{\bm{x} | \bm{a}^T \bm{x} -b \leqslant 0\} \end{aligned} \tag{3} \]

即(非平凡)的线性不等式的解空间,其中\(a\ne 0\)。半空间是凸的,但不是仿射的。集合\(\{\bm{x} | \bm{a}^T \bm{x} -b < b\}\)是半空间\(\{\bm{x} | \bm{a}^T \bm{x} -b \leqslant 0\}\)的内部,称为开半空间。

1.2 线性可分支持向量机

我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{+1, -1\}\)\(\bm{X}\)为输入空间上的随机向量,其取值为\(\bm{x}\),满足\(\bm{x} \in \mathcal{X}\)\(Y\)为输出空间上的随机变量,设其取值为\(y\),满足\(y \in \mathcal{Y}\)。我们将容量为\(m\)的训练样本表示为:

\[\begin{aligned} D = \{\{\bm{x}^{(1)}, y^{(1)}\}, \{\bm{x}^{(2)}, y^{(2)}\},..., \{\bm{x}^{(m)}, y^{(m)}\}\} \end{aligned}\tag{4} \]

\(y^{(i)} = +1\)时,我们称\(\bm{x}^{(i)}\)为正例;当\(y^{(i)} = -1\)时,称\(\bm{x}^{i}\)为负例。\((\bm{x}^{(i)}, y^{(i)})\)称为样本点。
如果我们假设训练数据集是线性可分的,则我们可以在特征空间中找到一个分离超平面\(\{ \bm{x} | \bm{w}^T \bm{x} + b = 0 \}\),将特征空间划分为\(\{ \bm{x} | \bm{w}^T \bm{x} + b > 0 \}\)\(\{ \bm{x} | \bm{w}^T \bm{x} + b < 0 \}\)两个开半空间(显然法向量\(\bm{w}\)
向的一侧为正,另一侧为负),且为正的一侧对应负类,为负的一侧对应负类。

如果训练集线性可分,则我们存在无穷多个分离超平面将两类样本分开。如果我们采用感知机的误分类最小的训练策略(也就是仅仅保证分类的正确性),那么我们将求得无穷多个解。我们接下来定义的线性可分支持向量机将利用“间隔最大化”求解最优分离超平面(即能将两组数据正确划分且间隔最大的超平面,我们在“学习策略”板块中将详述这一概念),这时解是唯一的。

形式化地说,给定线性可分的数据集,通过间隔最大化策略学习得到的分离超平面为

\[\begin{aligned} \{ \bm{x} | \bm{w}^{*T} \bm{x} + b^{*} = 0 \} \end{aligned} \tag{5} \]

以及相应的分类决策函数

\[\begin{aligned} f(\bm{x}) = \text{sign} (\bm{w}^{*T} \bm{x} + b^{*}) \end{aligned} \tag{6} \]

称为线性可分支持向量机。

2. 学习策略

我们前面提到最好的超平面需要能将两组数据正确划分且间隔最大,那么间隔最大如何形式化地定义呢?我们先来看函数间隔和几何间隔的概念。

2.1 函数间隔和几何间隔

直观地看,一个点距离超平面的远近可以表示则我们对它进行分类的确信程度。一个点距离超平面越远,则我们对它的分类则越有把握。我们给定超平面\(\{ \bm{x} | \bm{w}^T \bm{x} + b = 0\}\)和一个实例点\(\bm{x}^{(i)}\),可以发现\(|\bm{w}^T \bm{x}^{(i)} + b|\)可以相对地表示点\(\bm{x}^{(i)}\)举例超平面的远近,而\(\bm{w}^T \bm{x}^{(i)} + b\)的符号与类标记\(y^{(i)}\)是否一致可以反映分类是否正确。据此,我们用\(y^{(i)} (\bm{w} \cdot \bm{x}^{(i)} + b)\)来对分类的确信度和正确性进行综合表示。\(y^{(i)} (\bm{w}^T \bm{x}^{(i)} + b)\)为正数,表示分类器能够正确完成分类功能,且\(y^{(i)} (\bm{w}^T \bm{x}^{(i)} + b)\)越大,则分类器越好;\(y^{(i)} (\bm{w}^T \bm{x}^{(i)} + b)\)为负数,就表示分类器连正确分类功能都不能完成了,负得越多,表示错的越离谱(HaHa,应该可以这么理解叭)。 于是,我们给出下列函数间隔的定义。

函数间隔 对于给定的数据集\(D\)和超平面\(\{ \bm{x} | \bm{w}^T \bm{x} + b = 0\}\),定义该超平面关于数据集中样本点\((\bm{x}^{(i)}, y^{(i)})\)的函数间隔为

\[\begin{aligned} \hat{\gamma}^{(i)} = y^{(i)}(\bm{w}^T\bm{x}^{(i)} + b) \end{aligned} \tag{7} \]

定义该超平面关于训练集\(D\)的函数间隔为该超平面关于\(D\)中所有样本点函数间隔的最小值,即

\[\begin{aligned} \hat{\gamma} = \underset{i=1,...,m}{\min}\hat{\gamma}^{(i)} \end{aligned} \tag{8} \]

如果单单根据函数间隔的大小来选顶最佳超平面,那还不够准确。因为我们知道,令超平面的法向量\(\bm{w}\)经过缩放变换为\(\lambda \bm{w}\),超平面的截距项缩放变换为\(\lambda b\),超平面是本身并没有改变的,但函数间隔\(\hat{\gamma}^{(i)}\)却变为\(\lambda \hat{\gamma}^{(i)}\),这显然与事实不符。因此,我们需要对超平面的法向量加一些约束,如规范化,令\(|| \bm{w} ||=1\),使得间隔是确定的。这时的函数间隔就是我们后面所提到的几何间隔的一种特殊情况。

我们定义实例\((\bm{x}^{(i)}, y^{(i)})\)到超平面\(\{ \bm{x} | \bm{w}^T \bm{x} + b = 0\}\)的带符号距离为\(\frac{\bm{w}^T \bm{x}^{(i)} + b}{||\bm{w}||}\)(在法向量那一侧则为正),我们用这个做为来做为分类的确信度。类似地,我们我们用\(y^{(i)} \frac{\bm{w}^T \bm{x}^{(i)} + b}{||\bm{w}||}\)来对分类的确信度和正确性进行综合表示。于是,我们给出下列几何间隔的定义。

几何间隔 对于给定的数据集\(D\)和超平面\(\{ \bm{x} | \bm{w}^T \bm{x} + b = 0\}\),定义该超平面关于数据集中样本点\((\bm{x}^{(i)}, y^{(i)})\)的几何间隔为

\[\begin{aligned} \gamma^{(i)} = y^{(i)} \frac{\bm{w}^T \bm{x}^{(i)} + b}{||\bm{w}||} \end{aligned} \tag{9} \]

定义该超平面关于训练集\(D\)的函数间隔为该超平面关于\(D\)中所有样本点函数间隔的最小值,即

\[\begin{aligned} \gamma = \underset{i=1,...,m}{\min}\gamma^{(i)} \end{aligned} \tag{10} \]

对比一下式\((7)、(8)\)和式\((9)、(10)\)我们知道,函数间隔和集合间隔存在下列关系\(\gamma^{(i)} = \frac{\hat{\gamma}^{(i)}}{||\bm{w}||}\)\(\gamma = \frac{\hat{\gamma}}{||\bm{w}||}\)。可以看到,若\(||\bm{w}||=1\),则函数间隔等于几何间隔,如果\(\bm{w}\)\(b\)都进行大小为\(\lambda\)的缩放变换,函数间隔也会缩放\(\lambda\),但几何间隔不变。

2.2 间隔最大化

要想使分离超平面更可靠,我们只需要保证该超平面关于\(D\)中所有样本点几何间隔的最小值\(\gamma\)尽量大即可(这样自然就能保证所有点的几何间隔尽量大),我们称此为间隔最大化策略(或称为硬间隔最大化,和后面训练集近似线性可分的软间隔最大化相对应)。

可以知道,满足间隔最大化的超平面是唯一的,它能够对所有训练数据有足够大的确信度分类,也就是说不仅能够对实例点进行分类,而且对于所有实例点能够有足够大的确信度分类,这样的超平面的未知的测试实例有很好的分类预测能力。我们将该问题表述为以下带约束优化问题:

\[\begin{aligned} \underset{\bm{w}, b}{\max} \quad \gamma \\ \text{s.t.} \quad y^{(i)} \frac{\bm{w}^T \bm{x}^{(i)} + b}{||\bm{w}||} \geq \gamma \\ \quad (i = 1, 2, ..., m) \end{aligned} \tag{11} \]

根据\(\gamma = \frac{\hat{\gamma}}{||\bm{w}||}\),我们可以将优化问题\((11)\)写作:

\[\begin{aligned} \underset{\bm{w}, b}{\max} \quad \frac{\hat{\gamma}}{||\bm{w}||}\\ \text{s.t.} \quad y^{(i)} (\bm{w}^T \bm{x}^{(i)} + b) \geq \hat{\gamma} \\ \quad (i = 1, 2, ..., m) \end{aligned} \tag{12} \]

我们将\(\bm{w}\)\(b\)缩放变换为\(\lambda \bm{w}\)\(\lambda b\),则函数间隔\(\hat{\gamma}\)变为\(\lambda \hat{\gamma}\)。我们法线函数间隔的这一改变对\((11)\)中最优化问题的约束目标函数和不等式约束都没有影响,也就是说它产生了一个等价的最优化问题。

这样,就可以取\(\hat{\gamma}=1\)。将\(\hat{\gamma}=1\)代入上面的最优化问题,相当于最大化\(\frac{1}{||\bm{w}||}\)。不过这样目标函数非凸,一般较难求解,为了将其转换为凸优化问题,我们将原本的优化目标函数等价转换为最小化\(\frac{1}{2}||\bm{w}||^2\)这样我们就将线性可分支持向量机的学习策略转换为了一个(凸)二次规划问题:

\[\begin{aligned} \underset{\bm{w}, b}{\min} \quad \frac{1}{2} || \bm{w}||^2\\ \text{s.t.} \quad y^{(i)} (\bm{w}^T \bm{x}^{(i)} + b) -1 \geq 0 \\ \quad (i = 1, 2, ..., m) \end{aligned} \tag{13} \]

该形式称为线性可分支持向量机的标准型。

附:


这里提一下凸优化问题和二次规划问题的概念。凸优化问题定义如下

\[\begin{aligned} \underset{\bm{x}}{\min} \quad f_0(\bm{x})\\ \text{s.t.} \quad f_i(\bm{x}) \leq 0 \quad (i = 1, 2, ..., m) \\ h_i(\bm{x}) = 0 \quad (i = 1, 2, ..., p) \end{aligned} \tag{14} \]

其中目标函数\(f_0(\bm{x})\)和约束函数\(f_i(\bm{x})\)都为凸函数,且等式约束函数\(h_i(\bm{x})\)为仿射函数(也就是说,\(h_i(\bm{x})\)可以写成\(h_i(\bm{x})= \bm{a}^T\bm{x} + b\)的形式。

特别地,当凸优化问题的目标函数\(f_0(\bm{x})\)是(凸)二次型并且约束函数\(f_i(\bm{x})\)为仿射时,该问题称为二次规划(QP)。二次规划可以表述为:

\[\begin{aligned} \underset{\bm{x}}{\min} \quad (\frac{1}{2})\bm{x}^T\textbf{P}\bm{x} + \textbf{q}^{T} \bm{x} + r \\ \text{s.t.} \quad f_i(\bm{x}) \leq 0 \quad (i = 1, 2, ..., m) \\ h_i(\bm{x}) = 0 \quad (i = 1, 2, ..., p) \end{aligned} \tag{15} \]

其中\(\textbf{P}\)是对称正定矩阵(在式\((13)\)中,\(\textbf{P}\)即是单位阵\(\textbf{I}\)),约束函数\(f_i(\bm{x})\)和等式约束函数\(h_i(\bm{x})\)都是仿射函数。


接下来我们会介绍该凸二次规划问题的求解算法。

3. 算法

接下来我们推导求解线性可分支持向量机的高效算法。(真的是万般皆推导,难的是算法的推导过程,算法实现反而很简单)

直接求解式\((13)\)计算复杂度过高,而凸优化理论中告诉了我们许多可以高效求解\((13)\)问题的理论。我们将问题\((13)\)的形式做为原始问题(primal problem)。应用拉格朗日对偶性。通过求解对偶问题(dual problem)同样得到原始问题的最优解,而且求解会更加高效。问题求解可分两步走。
第一步:推导原始问题的对偶形式并求得对偶问题的最优解\(\alpha^{*}\)

我们引入拉格朗日乘子向量\(\bm{\alpha} = ( \alpha_{1}, \alpha_{2},..., \alpha_{m} )^T\),每个不等式约束对应一个拉格朗日乘子\(\alpha_i \geq 0, i=1,2,...,m\),我们以此定义拉格朗日函数:

\[\begin{aligned} L(\bm{w}, b, \bm{\alpha}) = \frac{1}{2}||\bm{w}||^2 + (- \sum_{i=1}^{m}\alpha_i y^{(i)}(\bm{w}^T\bm{x}^{(i)}+b)) + \sum_{i=1}^{m}\alpha_i \end{aligned} \tag{16} \]

(注意,标准凸优化问题式\((14)\)的约束项是小于等于,我们的式\((13)\)是大于等于,在写出拉格朗日函数前,需要对原来的约束不等式两边同乘\(-1\)

根据拉格朗日对偶性,原始问题的对偶问题是极大极小问题:

\[\begin{aligned} \underset{\bm{\alpha}}{\max}\underset{\bm{w}, b}{\min}L(\bm{w}, b, \bm{\alpha}) \end{aligned} \tag{17} \]

我们将问题拆解为先对\(\bm{w}\)\(b\)求极小,再求对\(\bm{\alpha}\)求极大。

(1) 首先,我们求\(g(\bm{\alpha}) = \underset{\bm{w},b}{\min}L(\bm{w}, b, \bm{\alpha})\)。由凸函数\(L(\bm{w}, b, \bm{\alpha})\)极值满足的一阶必要条件有

\[\begin{aligned} \nabla_{\bm{w}}L(\bm{w}, b, \bm{\alpha}) = \bm{w} - \sum_{i=1}^{m}\alpha_i y^{(i)}\bm{x}^{(i)} = 0 \\ \nabla_{b}L(\bm{w}, b, \bm{\alpha}) = - \sum_{i=1}^{m}\alpha_iy^{(i)} = 0 \end{aligned} \tag{18} \]

可得:

\[\begin{aligned} \bm{w} = \sum_{i=1}^{m}\alpha_i y^{(i)}\bm{x}^{(i)}\\ \sum_{i=1}^{m}\alpha_iy^{(i)} = 0 \end{aligned} \tag{19} \]

关于\(\bm{w}\)的等式是一个对\(\bm{w}\)的显式替换,而第二个等式是对式\(L(\bm{w}, b, \alpha)\)的一个约束,我们先将式\((19)\)中的等式一代入式\((16)\)\(L(\bm{w}, b, \bm{\alpha})\)中有

\[L(\bm{w}, b, \bm{\alpha}) =\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy^{(i)}y^{(j)}\langle \bm{x}^{(i)}, \bm{x}^{(j)}\rangle - \sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy^{(i)}y^{(j)}\langle \bm{x}^{(i)}, \bm{x}^{(j)}\rangle - \sum_{i=1}^{m}\alpha_iy^{(i)}b + \sum_{i=1}^{m}\alpha_i \tag{20} \]

虽然式\((19)\)没有显式的关于\(b\)的等式可供代入,但我们发现将第二个等式\(\sum_{i=1}^{m}\alpha_iy^{(i)}=0\)带入后就可以将\(b\)的那项消掉,得到原问题的拉格朗日对偶函数(或对偶函数)为

\[g(\bm{\alpha}) = \underset{\bm{w}, b}{\min}L(\bm{w}, b, \bm{\alpha}) = -\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy^{(i)}y^{(j)}\langle \bm{x}^{(i)}, \bm{x}^{(j)}\rangle + \sum_{i=1}^{m}\alpha_i \]

(2) 接下来我们再求\(\underset{\bm{\alpha}}{\max}{g(\bm{\alpha})}\),这也就是我们需要求的对偶问题。

\[\begin{aligned} \underset{\bm{\alpha}}{\max} -\frac{1}{2}\sum_{i=1}^{m}\sum_{j=1}^{m}\alpha_i\alpha_jy^{(i)}y^{(j)}\langle \bm{x}^{(i)}, \bm{x}^{(j)}\rangle + \sum_{i=1}^{m}\alpha_i \\ s.t. \sum_{i=1}^{m}\alpha_iy^{(i)} = 0 \\ \alpha_i \geq 0, i, 2,...,m \end{aligned} \tag{22} \]

可以看出,式\((22)\)这个对偶问题只用求解\(\bm{\alpha}\)系数而\(\bm{\alpha}\)系数只有支持向量才非0,其他全为0,这样的话求解对偶问题的计算就会更加高效。至于求解式\((22)\)算法的具体实现,一般可采用凸优化求解中的内点法(调用支持专业凸优化的Gurobi库),或者采用我们后面一章将会介绍的SMO算法进行求解,在此不再详述。
解式\((22)\)后我们得到\(\bm{\alpha}\)的解\(\bm{\alpha}^{*} = (\alpha_1^{*}, \alpha_2^{*}, ..., \alpha_m^{*})^{T}\)

第二步:由对偶问题的最优解\(\alpha^{*}\)求得原始问题式\((13)\)的最优解\(\bm{w}^{*},b^{*}\)

如果\(\alpha^{*} = (\alpha_1^{*}, \alpha_2^{*}, ..., \alpha_{m}^{*})^{T}\)是对偶最优化问题的解,我们将\(\alpha_i>0\)对应的实例点集合被称为支持向量,我们设\(U = \{\alpha_i | \alpha_i >0 \}\),我们\(U\)从中随机采一个\(\alpha_s\),对应的样本为\((\bm{x}^{(s)}, y^{(s)})\),可按下式求得原始最优化问题\((13)\)的解\(\bm{w}^{*}, b^*\)

\[\begin{aligned} \bm{w}^{*} = \sum_{i=1}^{m}\alpha_i^{*}y^{(i)}\bm{x}^{(i)} \\ b^{*} = y^{(s)} - \sum_{i=1}^{m}\alpha_i^*y^{(i)}\langle \bm{x}^{(s)}, \bm{x}^{(i)} \rangle \end{aligned} \tag{23} \]

附:


\((23)\)可根据KKT条件推导而得。KKT条件如下:

\[\nabla_{\bm{w}}L(\bm{w}^{*}, b^{*}, \bm{\alpha}^{*}) = \bm{w}^{*} - \sum_{i=1}^{m}\alpha_{i}y^{(i)}\bm{x}^{(i)} = 0 \\ \nabla_{b}L(\bm{w}^{*}, b^{*}, \bm{\alpha}^{*}) = - \sum_{i=1}^{m}\alpha_iy^{(i)} = 0 \\ \alpha_{i}^{*}[y^{(i)}({\bm{w^{*}}}^T \bm{x}^{(i)}+b^{*}) - 1] = 0, \quad i=1,2,...,m \\ y^{(i)}({\bm{w^{*}}}^T \bm{x}^{(i)}+b^{*}) - 1 \geq 0, \quad i=1, 2,..., m \\ a_i^* \geq 0 \tag{24} \]

由式\((24)\)中第一个等式,我们可得:

\[\bm{w}^* = \sum_{i=1}^{m}\alpha_{i}y^{(i)}\bm{x}^{(i)} \tag{25} \]

其中至少有一个\(\alpha_i^{*}>0\)(用反证法,假设\(\alpha_i\)全为0,则\(\bm{w}^{*}\)为0,而易得\(\bm{w}\)为0不是原始问题\((13)\)的最优解,产生矛盾,故假设不符)。

\((24)\)中第三个等式称为KKT互补条件,我们设\(U = \{\alpha_i^* | \alpha_i^* >0 \}\),我们\(U\)从中随机采一个\(\alpha_s^*\),对应的样本为\((\bm{x}^{(s)}, y^{(s)})\)。因为有\(\alpha_s^*>0\),则必有

\[y^{(s)}({\bm{w^{*}}}^T \bm{x}^{(s)}+b^{*}) - 1 = 0 \tag{26} \]

我们将式\((25)\)代入式\((26)\),方程两边同乘\(y^{(s)}\),并注意到\(y^{(s)2}=1\),我们有

\[b^{*} = y^{(s)} - \sum_{i=1}^{m}\alpha_i^{*}y^{(i)}\langle \bm{x}^{(i)}, \bm{x}^{(s)} \rangle \tag{27} \]


这样,我们就可以得到分离超平面如下:

\[\{\bm{x} | \sum_{i=1}^{m}\alpha_i^*y^{(i)}\langle \bm{x}^{(i)}, \bm{x} \rangle + b^* = 0\} \tag{29} \]

分类决策函数如下:

\[f(\bm{x}) = \text{sign}(\sum_{i=1}^{m}\alpha_i^*y^{(i)}\langle \bm{x}^{(i)}, \bm{x} \rangle + b^*) \tag{29} \]

(之所以写成\(\langle \bm{x}^{(i)}, \bm{x} \rangle\)的内积形式是为了方便我们后面引入核函数)

给定测试样本\(\bm{x}^*\),我们就能按照式\((29)\)计算其类别\(f(\bm{x}^*)\)。由式\((23)\)可知,\(\bm{w}^*\)\(b^*\)只依赖于\(\alpha_i>0\)的样本点\((\bm{x}^{(i)}, y^{(i)})\),而其他样本点对\(\bm{w}^*\)\(b\)没有影响。我们将训练数据中对应于\(a_i^*>0\)的实例点\(\bm{x}^{(i)} \in \mathbb{R}^n\)称为支持向量。
综上,按照式\((13)\)的策略求解线性可分支持向量机的算法如下: 
线性可分支持向量机学习算法
一个超平面将\(\mathbb{R}^n\)划分为两个半空间,(闭的)半空间是具有下列形式的集合:
观察算法的2、3步可知,我们只需要关注\(\alpha_i>0\)对应的相关的实例(也就是支持向量),故实际计算复杂度其实很低。

4. 编程实现

为了简便起见,这里我们不使用要收费的gurobi库,也不采用下一章才介绍的SMO算法,而采用开源库cvxpy的Minimize函数求解式\((22)\)中的凸优化问题,该问题是有约束优化问题,我们设置好目标函数和约束项,采用凸优化算法对其进行求解。代码实现如下:

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
from copy import deepcopy
import cvxpy as cp
from random import choice
class SVM():
    def __init__(self):
        pass

    def objective_func(self, alpha):
        sum_v = 0
        for i in range(self.m):
            for j in range(self.m):
                sum_v += alpha[i]*alpha[j]*self.y_train[i]*self.y_train[j]*self.X_train[i].dot(self.X_train[j])
        return 1/2*sum_v - cp.sum(alpha)

    def fit(self, X_train, y_train):
        self.m = X_train.shape[0] #样本个数
        self.X_train, self.y_train = deepcopy(X_train), deepcopy(y_train)

        alpha = cp.Variable(shape=self.m)
        objective = cp.Minimize(self.objective_func(alpha))
        constraints = [self.y_train.dot(alpha)==0, alpha>=0]
        prob = cp.Problem(objective, constraints)
        alpha_star = alpha.value
        self.w = np.zeros(X_train.shape[1])
        for i in range(self.m):
            self.w += X_train[i]*(alpha_star[i]*y_train[i])
        S_with_idx = [(alpha_star_i, idx) for idx, alpha_star_i in enumerate(alpha_star) if alpha_star_i > 0] 
        (_, s) = choice(S_with_idx) # 从 S={a_i* | a_i* > 0}中随机采一个a_s*,记录s
        self.b = self.y_train[s]
        for i in range(self.m):
            self.b -= X_train[i].dot(X_train[s])*alpha_star[i]*y_train[i]
        del [self.X_train, self.y_train]

    def pred(self, X_test):
        # 遍历测试集中的每一个样本
        y_pred = []
        for x in X_test:
            y_hat = np.sign(self.w.dot(x)+self.b)
            y_pred.append(y_hat)
        return np.array(y_pred)
                
if __name__ == "__main__":
    X, y = load_breast_cancer(return_X_y=True)
    # 标签统一转化为1和-1
    y = np.where(y==1, y, -1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
    clf = SVM()
    clf.fit(X_train, y_train)
    y_pred = clf.pred(X_test)
    acc_score = accuracy_score(y_test, y_pred)
    print("The accuracy is: %.1f" % acc_score)

在运行该代码的过程中,我们发现主要时间都耗费在调用Minimize函数求解式\((22)\)中的优化问题上。在我的电脑(Macbook pro13 + 8核M1芯片)上经过2分钟算法都无法收敛。所以我们建议大家采用更高效专业的gurobi库(不过要收费),或者采用我们之后将会介绍的SMO算法进行求解。

参考文献

  • [1] 李航. 统计学习方法(第2版)[M]. 清华大学出版社, 2019.
  • [2] 周志华. 机器学习[M]. 清华大学出版社, 2016.
  • [3] Boyd S, Boyd S P, Vandenberghe L. Convex optimization[M]. Cambridge university press, 2004.
  • [4] https://www.cvxpy.org/
  • [5] https://www.gurobi.com/
posted @ 2021-08-28 19:00  orion-orion  阅读(1118)  评论(0编辑  收藏  举报