随笔分类 - 计算机程序的构造和解释
摘要:
在上一篇博客中,我们介绍了用Python对来实现一个Scheme求值器。然而,我们跳过了部分特殊形式(special forms)和基本过程(primitive procedures)实现的介绍,如特殊形式中的delay、cons-stream,基本过程中的force、streawn-car、stream-map等。事实上,以上特殊形式和基本过程都和惰性求值与流相关。这篇博客我们将介绍如何用Python来实现Scheme中的惰性求值和流,并使用惰性求值的原理来为我们的Scheme解释器增添尾递归的支持。所谓流,一言以蔽之,就是使用了惰性求值技术的表。它初始化时并没有完全生成,而是能够动态地按需构造,从而同时提升程序的计算和存储效率。
阅读全文

摘要:
元语言抽象就是建立新的语言。它在工程设计的所有分支中都扮演着重要的角色,在计算机程序设计领域更是特别重要。因为这个领域中,我们不仅可以设计新的语言,还可以通过构造求值器的方式实现这些语言。对某个程序设计语言的求值器(或者解释器)也是一个过程,在应用于这个语言的一个表达式时,它能够执行求值这个表达式所要求的动作。接下来我们将要讨论如何关于在一些语言的基础上构造新的语言。在这篇博客里,我们将用Python语言去构造一个Scheme语言的求值器。事实上求值器的实现语言无关紧要,我们也可以用Scheme语言去构造Scheme语言的求值器。用于被求值语言同样的语言写出来的求值器被称为元循环(metacircular)。
阅读全文

摘要:
一个环境就是帧(frame) 的一个序列,每个帧是包含着一些绑定(bindings) 的表格。这些约束将一些变量名字关联于对应的值(在一个帧内,任何变量至多只有一个绑定)。每个帧还包含一个指针,指向这个帧的外围环境(enclosing environment)。如果由于当前讨论的目的,将相应的帧看做是全局(global) 的,那么它将没有外围环境。一个变量相对于某个特定环境的值,也就是在这一环境中,包含着该变量的第一个帧里这个变量的绑定值。
阅读全文

摘要:
前面我们介绍了组成程序的各种基本元素,看到了如何把基本过程和基本数据组合起来,构造出复合的实体。不过对于设计程序而言,这些手段还不够,我们还需要一些能够帮助我们构造起模块化(modular)的大型系统的策略。所谓模块化,也即使这些系统能够“自然地”划分为一些内聚(coherent)的部分,使这些部分可以分别进行开发和维护。接下来我们要研究两种特色很鲜明的组织策略,它们源自于对于系统结构的两种非常不同的“世界观”(world views),它们分别将注意力放在对象(objects)和信息流(streams of information)上。
阅读全文

摘要:
数据抽象屏障是控制复杂性的强有力工具,然而这种类型的数据抽象还不够强大有力。从一个另一个角度看,对于一个数据对象可能存在多种有用的表示方式,且我们希望所设计的系统能够处理多种表示形式。比如,复数就可以表示为两种几乎等价的形式:直角坐标形式(实部和虚部)和极坐标形式(模和幅角)。有时采用直角坐标更方便,有时采用幅角更方便。我们希望设计的过程能够对具有任意表示形式的复数工作。
阅读全文

摘要:
到目前为止,我们已经使用过的所有复合数据,最终都是从数值出发构造起来的(比如我们在上一篇博客所介绍的链表和树就基于数来进行层次化构造)。在这一节里,我们要扩充所用语言的表达能力,引进将任意符号作为数据的功能。本节内容包括符号求导、如何设计集合的表示和Huffman编码树。
阅读全文

摘要:
序对可以为我们提供用于构造复合数据的基本“粘接剂”,鉴于Python中tuple中元素不可变的性质,我们通过list来实现序对,如[1, 2]。Python的PyListObject对象中实际是存放的是PyObject*指针, 所以可以将PyListObject视为vecter
阅读全文
