Pandas 库的详解和使用补充
pandas 库总体说明
Pandas 基亍 NumPy、SciPy 补充了大量数据操作功能,能实现统计、凾组、排序、透规 表,可以代替 Excel 的绛大部凾功能。
Pandas 主要有 2 种重要数据类型:Series、DataFrame(一维序列、二维表)。数据类型 的转换需要用到 pd.Series/DataFrame.
1)Series
可以是一个样本的所有观测值戒一组样本的某一属性的观测值。
如利用 NumPy 生成一个正态凾布的随机数列,共含 4 个值。Series1 = pd.Series(np.random.randn(4))结果就自劢添加了行索引 index。
0 1 2 3
型的输出,后者给出具体的数值,仅仅输出 Series 中小亍 0 的数值。
可以使用 Key-Value 的斱式存储数据:
Series2 =
pd.Series(Series1.values, index = ["row_" + unicode(i) for i in
range(4)])同样,Python 的基础数据结构字典也可以转化为 Series。
Series3 =
pd.Series({"China": "Beijing", "England":
"GB", "Japan": "Tokyo"})输出结果依旧是一个序列,但是因为字典本身是无序的,所有有可能会打乱原字典的顸
序。如果需要顸便丌发,可以使用下面的斱法明确指定返种秩序:
Series4_IndexList = ["China", "Japan", "England"] Series4 = pd.Series(Series3, index = Series4_IndexList)
某些时候,Index 列表没有相应的对应值,返样会默认填补为空值,可以使用 isnull(0, notnull()来迒回 Boolean 结果。
Series5_IndexList = ["A",
"B", "C", "C"]
Series5 = pd.Series(Series1.values, index = Series5_IndexList)
index 允许重复,但是返样容易导致错诨。
2)DataFrame
DataFrame 可以规作 Series 的有序集合, 可以仍数据库、NumPy 二维数组、JSON 中定 义数据框。
NumPy 二维数组:
微信公号:ChinaHadoop 新浪微博:ChinaHadoop
-1.344609 0.177173 0.554958
-0.576237
过滤 Series 的斱法是:print Series1 <
0 戒 print Series1[Series1 < 0]。前者给出 Boolean 类
DF1 = pd.DataFrame(np.asarray([("Japan", "Tokyo", 4000), ("S.Korea", "Seoul", 1000), ("China", "Beijing", 9000)]), columns = ["nation", "capital", "GDP"])
JSON:
DF2 = pd.DataFrame({"nation":
["Japan", "S.Korea", "China"],
"capital": ["Tokyo", "Seoul",
"Beijing"], "GDP":
[4000, 1000, 9000]})
但是字典的 key 是无序的,所以我们又要用到刚才 Series 中的类似斱法加以解决:DF3 = pd.DataFrame(DF2, columns = ["nation",
"capital", "GDP"])对应地,迓可以人为指定行标秩序。
DF4 = pd.DataFrame(DF2,
columns = ["nation", "capital", "GDP"], index =
[2, 0, 1])
在 DataFrame 中凿片:
叏列:推荐使用 DF4["GDP"],最好别用 DF4.GDP,容易不一些关键字(保留字)冲突
叏行:DF4[0: 1]戒者 DF4.ix[0]
区别在亍前者叏了第一行,后者叏了 index(行标)为 0 的第一行。
此外,如果要在数据框劢态增加列,丌能用.的斱式,而要用[] DF4["region"] = "East Asian"
9.3.2 代表性函数的使用介绍:
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt
一、创建对象
1、可以通过传递一个 list 对象来创建一个 Series:
In [4]: s = pd.Series([1,3,5,np.nan,6,8])In [5]: s
Out[5]:
- 0 1.0
- 1 3.0
- 2 5.0
- 3 NaN
- 4 6.0
- 5 8.0
dtype: float64
2、通过传递一个 numpy array,时间索引以及列标签来创建一个 DataFrame:
In [6]: dates = pd.date_range('20130101', periods=6)
In [7]: dates
Out[7]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D')
In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
In [9]: df
Out[9]:
2013-01-01
2013-01-02
2013-01-03
2013-01-04
2013-01-05
2013-01-06
ABCD 0.469112 -0.282863 -1.509059 -1.135632 1.212112 -0.173215 0.119209 -1.044236
-0.861849 -2.104569 -0.494929 1.071804 0.721555 -0.706771 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401 -0.673690 0.113648 -1.478427 0.524988
3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个 DataFrame:
In [10]: df2 = pd.DataFrame({ 'A' : 1.,
- ....: 'B' : pd.Timestamp('20130102'),
- ....: 'C' :
pd.Series(1,index=list(range(4)),dtype='float32'),
- ....: 'D' : np.array([3] * 4,dtype='int32'),
- ....: 'E' :
pd.Categorical(["test","train","test","train"]),
....: 'F' : 'foo' })....:
In [11]: df2
Out[11]:
ABCDEF 0 1.0 2013-01-02 1.0 3 test foo 1 1.0 2013-01-02 1.0 3 train foo 2 1.0 2013-01-02 1.0 3 test foo 3 1.0 2013-01-02 1.0 3 train foo
4、查看不同列的数据类型:
In [12]: df2.dtypesOut[12]:
A
B
C
D
E
F
dtype: object
float64
datetime64[ns]
float32
int32
category
object
二、查看数据
1、 查看 frame 中头部和尾部的行:
In [14]: df.head()
Out[14]:
ABCD 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
In [15]: df.tail(3)Out[15]:
ABCD 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2、 显示索引、列和底层的 numpy 数据:
In [16]: df.index
Out[16]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D')
In [17]: df.columns
Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object')
In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])
3、 describe()函数对于数据的快速统计汇总:
In [19]: df.describe()Out[19]:
ABCD count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804
4、 对数据的转置:
In [20]: df.T
Out[20]:
2013-01-01
A 0.469112
B -0.282863
C -1.509059
D -1.135632
2013-01-02
1.212112
-0.173215
0.119209
-1.044236
2013-01-03
-0.861849
-2.104569
-0.494929
1.071804
2013-01-04
0.721555
-0.706771
-1.039575
0.271860
2013-01-05
-0.424972
0.567020
0.276232
-1.087401
2013-01-06
-0.673690
0.113648
-1.478427
0.524988
5、 按轴进行排序
In [21]: df.sort_index(axis=1, ascending=False)Out[21]:
DCBA 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690
6、 按值进行排序
In [22]: df.sort_values(by='B')Out[22]:
ABCD 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
三、选择
虽然标准的 Python/Numpy 的选择和设置表达式都能够直接派上用场,但是作为工程 使用的代码,推荐使用经过优化的 pandas 数据访问方式: .at, .iat, .loc, .iloc 和 .ix。
获取
1、 选择一个单独的列,这将会返回一个 Series,等同于 df.A:
In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02
2013-01-03
2013-01-04
2013-01-05
2013-01-06
Freq: D, Name: A, dtype: float64
1.212112
-0.861849
0.721555
-0.424972
-0.673690
2、 通过[]进行选择,这将会对行进行切片
In [24]: df[0:3]
Out[24]:
ABCD 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
In [25]: df['20130102':'20130104']Out[25]:
ABCD 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
通过标签选择
1、 使用标签来获取一个交叉的区域
In [26]: df.loc[dates[0]]Out[26]:
- A 0.469112
- B -0.282863
- C -1.509059
- D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64
2、 通过标签来在多个轴上进行选择
In [27]: df.loc[:,['A','B']]Out[27]:
AB 2013-01-01 0.469112 -0.282863 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 2013-01-06 -0.673690 0.113648
3、 标签切片
In [28]: df.loc['20130102':'20130104',['A','B']]Out[28]:
AB 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771
4、 对于返回的对象进行维度缩减
In [29]: df.loc['20130102',['A','B']]Out[29]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64
5、 获取一个标量
In [30]: df.loc[dates[0],'A']Out[30]: 0.46911229990718628
6、 快速访问一个标量(与上一个方法等价)
In [31]: df.at[dates[0],'A']Out[31]: 0.46911229990718628
通过位置选择
1、 通过传递数值进行位置选择(选择的是行)
In [32]: df.iloc[3]Out[32]:
A
B
C
D
Name: 2013-01-04 00:00:00, dtype: float64
0.721555
-0.706771
-1.039575
0.271860
2、 通过数值进行切片,与 numpy/python 中的情况类似
In [33]: df.iloc[3:5,0:2]Out[33]:
AB 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020
3、 通过指定一个位置的列表,与 numpy/python 中的情况类似
In [34]: df.iloc[[1,2,4],[0,2]]Out[34]:
AC 2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929 2013-01-05 -0.424972 0.276232
4、对行进行切片
In [35]: df.iloc[1:3,:]Out[35]:
ABCD 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
5、 对列进行切片
In [36]: df.iloc[:,1:3]Out[36]:
BC 2013-01-01 -0.282863 -1.509059 2013-01-02 -0.173215 0.119209 2013-01-03 -2.104569 -0.494929 2013-01-04 -0.706771 -1.039575 2013-01-05 0.567020 0.276232 2013-01-06 0.113648 -1.478427
6、 获取特定的值
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858
布尔索引
1、 使用一个单独列的值来选择数据:
In [39]: df[df.A > 0]
Out[39]:
ABCD
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2、选择数据:
In [40]: df[df > 0]
Out[40]:
ABCD
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 NaN
NaN NaN NaN NaN 0.119209 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860 2013-01-05 NaN 0.567020 0.276232 NaN 2013-01-06 NaN 0.113648 NaN 0.524988
3、 使用 isin()方法来过滤:
In [41]: df2 = df.copy()
In [42]: df2['E'] = ['one', 'one','two','three','four','three']In [43]: df2
Out[43]:
ABCDE 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three
In [44]: df2[df2['E'].isin(['two','four'])]Out[44]:
ABCDE 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
设置
1、 设置一个新的列:
In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64
In [47]: df['F'] = s1
2、 通过标签设置新的值:
In [48]: df.at[dates[0],'A'] = 0
3、 通过位置设置新的值:
In [49]: df.iat[0,1] = 0
4、 通过一个 numpy 数组设置一组新值:
In [50]: df.loc[:,'D'] = np.array([5] * len(df))
上述操作结果如下:
In [51]: df
Out[51]:
ABCDF 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 2013-01-05 -0.424972 0.567020 0.276232 5 4.0 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0
5、 通过 where 操作来设置新的值:
In [52]: df2 = df.copy()
In [53]: df2[df2 > 0] = -df2In [54]: df2
Out[54]:
ABCDF 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0
四、缺失值处理
在 pandas 中,使用 np.nan 来代替缺失值,这些值将默认不会包含在计算中
1、reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据 的一个拷贝:
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
In [57]: df1
Out[57]:
ABCDFE 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN
2、 去掉包含缺失值的行:
In [58]: df1.dropna(how='any')Out[58]:
ABCDFE 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
3、 对缺失值进行填充:
In [59]: df1.fillna(value=5)Out[59]:
ABCDFE 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0
4、 对数据进行布尔填充:
In [60]: pd.isnull(df1)Out[60]:
ABCDFE 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True
操作
统计(相关操作通常情况下不包括缺失值)
1、 执行描述性统计:
In [61]: df.mean()
Out[61]:
- A -0.004474
- B -0.383981
- C -0.687758
D 5.000000
F 3.000000
dtype: float64
2、 在其他轴上进行相同的操作:
In [62]: df.mean(1)Out[62]:
2013-01-01
2013-01-02
2013-01-03
2013-01-04
0.872735
1.431621
0.707731
1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64
3、 对于拥有不同维度,需要对齐的对象进行操作。Pandas 会自动的沿着指定的维 度进行广播:
In [63]: s
In [64]: s
Out[64]:
2013-01-01
2013-01-02
2013-01-03
2013-01-04
2013-01-05
2013-01-06
Freq: D, dtype: float64
In [65]: df.sub(s, axis='index')Out[65]:
ABCDF 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
= pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
NaN
NaN
1.0
3.0
5.0
NaN
2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0 2013-01-06 NaN NaN NaN NaN NaN
Apply
1、 对数据应用函数:
In [66]: df.apply(np.cumsum)Out[66]:
ABCDF
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0
In [67]: df.apply(lambda x: x.max() - x.min())Out[67]:
- A 2.073961
- B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64
直方图
In [68]: s = pd.Series(np.random.randint(0, 7, size=10))In [69]: s
Out[69]:
04
12 21 32 46 54 64 76 84 94 dtype: int64
In [70]: s.value_counts()Out[70]:
45 62 22 11 dtype: int64
字符串方法
Series 对象在其 str 属性中配备了一组字符串处理方法,可以很容易的应用到数组中的 每个元素,如下段代码所示。变成小写。
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog','cat'])
In [72]: s.str.lower()Out[72]:
0a
1b
2c 3 aaba 4 baca 5 NaN
6 caba
7 dog
8 cat
dtype: object
六、合并
Pandas 提供了大量的方法能够轻松的对 Series,DataFrame 和 Panel 对象进行各种符 合各种逻辑关系的合并操作。
用 concat()把 pandas 类合并到一起:
In [73]: df = pd.DataFrame(np.random.randn(10, 4))In [74]: df
Out[74]:
0123 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495
# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]
In [76]: pd.concat(pieces)Out[76]:
0123 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495
Join
Join 类似于 SQL 类型的合并
In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})In [79]: left
Out[79]:
key lval 0foo 1 1foo 2
In [80]: right
Out[80]:
key rval 0foo 4 1foo 5
In [81]: pd.merge(left, right, on='key')Out[81]:
key lval rval 0foo 1 4 1foo 1 5 2foo 2 4 3foo 2 5
Append
Append 将一行连接到一个 DataFrame 上
In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])In [83]: df
Out[83]:
ABCD 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610 4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758
In [84]: s = df.iloc[3]
In [85]: df.append(s, ignore_index=True)Out[85]:
ABCD 0 1.346061 1.511763 1.627081 -0.990582 1 -0.441652 1.211526 0.268520 0.024580 2 -1.577585 0.396823 -0.105381 -0.532532 3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205 5 -0.339355 0.593616 0.884345 1.591431 6 0.141809 0.220390 0.435589 0.192451 7 -0.096701 0.803351 1.715071 -0.708758 8 1.453749 1.208843 -0.080952 -0.264610
七、分组
对于”group by”操作,我们通常是指以下一个或多个操作步骤: (Splitting)按照一些规则将数据分为不同的组; (Applying)对于每组数据分别执行一个函数; (Combining)将结果组合到一个数据结构中;
In [86]:
....:
....:
....:
....:
....:
....:
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],
'B' : ['one', 'one', 'two', 'three','two', 'two', 'one', 'three'],
'C' : np.random.randn(8),'D' : np.random.randn(8)})
In [87]: df
Out[87]:
ABCD 0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985 2 foo two 1.018601 1.552825 3 bar three -0.595447 0.166599
4 foo
5 bar
6 foo
7 foo three 1.928123 -1.623033
two 1.395433 0.047609
two -0.392670 -0.136473
one 0.007207 -0.561757
1、 分组并对每个分组执行 sum 函数:
In [88]: df.groupby('A').sum()
Out[88]:
CD
A
bar -2.802588 2.42611
foo 3.146492 -0.63958
2、 通过多个列进行分组形成一个层次索引,然后执行函数:
In [89]: df.groupby(['A','B']).sum()Out[89]:
CD
AB
bar one -1.814470 2.395985
three -0.595447 0.166599
two -0.392670 -0.136473
foo one -1.195665 -0.616981
three 1.928123 -1.623033
two 2.414034 1.600434
Reshaping
Stack
In [90]:
....:
....:
....:
....:
In [91]:
In [92]:
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz','foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two','one', 'two', 'one', 'two']]))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A',
'B'])
In [93]: df2 = df[:4]
In [94]: df2
Out[94]:
AB
first second
bar one
two
baz one
two
0.029399 -0.542108
0.282696 -0.087302
-1.575170 1.771208
0.816482 1.100230
.
In [95]: stacked = df2.stack()In [96]: stacked
Out[96]:
first second bar one A
0.029399
B -0.542108
two A
B -0.087302
0.282696
baz one A
B 1.771208
-1.575170
two A
B 1.100230
dtype: float64
0.816482
In [97]: stacked.unstack()Out[97]:
AB
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302 baz one -1.575170 1.771208 two 0.816482 1.100230
In [98]: stacked.unstack(1)Out[98]:
second one two first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230
In [99]: stacked.unstack(0)Out[99]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230
数据透视表
In [100]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,.....: 'B' : ['A', 'B', 'C'] * 4,
- .....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar']* 2,
- .....: 'D' : np.random.randn(12),
- .....: 'E' : np.random.randn(12)})
- .....:
- In [101]: df
- Out[101]:
- ABCDE
- 0 one A foo 1.418757 -0.179666
- 1 one B foo -1.879024 1.291836
2
3
4
5
6
7
8
9
10
11 three C bar 0.648740 1.167115
two C foo 0.536826 -0.009614 three A bar 1.006160 0.392149 one B bar -0.029716 0.264599 one C bar -1.146178 -0.057409 two A foo 0.100900 -1.425638 three B foo -1.035018 1.024098 one C foo 0.314665 -0.106062 one A bar -0.773723 1.824375 two B bar -1.170653 0.595974
可以从这个数据中轻松的生成数据透视表:
In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])Out[102]:
C bar foo
AB
one A -0.773723 1.418757 B -0.029716 -1.879024 C -1.146178 0.314665 three A 1.006160 NaN B NaN -1.035018 C 0.648740 NaN two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826
九、导入和保存数据
CSV
1、 写入 csv 文件:
In [136]: df.to_csv('foo.csv')
2、 从 csv 文件中读取:
In [137]: pd.read_csv('foo.csv')Out[137]:
Unnamed: 0
- 0 2000-01-01
- 1 2000-01-02
- 2 2000-01-03
- 3 2000-01-04
- 4 2000-01-05
- 5 2000-01-06
- 6 2000-01-07
.. ...
A
0.266457
-1.170732
-1.734933
-1.555121
0.578117
0.478344
1.235339
...
B
-0.399641
-0.345873
0.530468
1.452620
0.511371
0.449933
-0.091757
...
C
-0.219582
1.653061
2.060811
0.239859
0.103552
-0.741620
-1.543861
...
D
1.186860
-0.282953
-0.515536
-1.156896
-2.428202
-1.962409
-1.084753
...
993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
[1000 rows x 5 columns]
HDF5
1、 写入 HDF5 存储:
In [138]: df.to_hdf('foo.h5','df')
2、 从 HDF5 存储中读取:
In [139]: pd.read_hdf('foo.h5','df')Out[139]:
ABCD 2000-01-01 0.266457 -0.399641 -0.219582 1.186860 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953 2000-01-03 -1.734933 0.530468 2.060811 -0.515536 2000-01-04 -1.555121 1.452620 0.239859 -1.156896 2000-01-05 0.578117 0.511371 0.103552 -2.428202
2000-01-06 0.478344 2000-01-07 1.235339 ... ... 2002-09-20 -10.628548 2002-09-21 -10.390377 2002-09-22 -8.985362 2002-09-23 -9.558560 2002-09-24 -9.902058 2002-09-25 -10.216020 2002-09-26 -11.856774
0.449933
-0.091757
...
-9.153563
-8.727491
-8.485624
-8.781216
-9.340490
-9.480682
-10.671012
-0.741620
-1.543861
...
-7.883146
-6.399645
-4.669462
-4.499815
-4.386639
-3.933802
-3.216025
-1.962409
-1.084753
...
28.313940
30.914107
31.367740
30.518439
30.105593
29.758560
29.369368
[1000 rows x 4 columns]
Excel
1、 写入 excel 文件:
In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
2、 从 excel 文件中读取:
In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[141]:
2000-01-01 0.266457 2000-01-02 -1.170732 2000-01-03 -1.734933 2000-01-04 -1.555121 2000-01-05 0.578117 2000-01-06 0.478344 2000-01-07 1.235339 ... ... 2002-09-20 -10.628548 2002-09-21 -10.390377 2002-09-22 -8.985362 2002-09-23 -9.558560 2002-09-24 -9.902058 2002-09-25 -10.216020 2002-09-26 -11.856774
-0.399641
-0.345873
0.530468
1.452620
0.511371
0.449933
-0.091757
...
-9.153563
-8.727491
-8.485624
-8.781216
-9.340490
-9.480682
-10.671012
-0.219582
1.653061
2.060811
0.239859
0.103552
-0.741620
-1.543861
...
-7.883146
-6.399645
-4.669462
-4.499815
-4.386639
-3.933802
-3.216025
1.186860
-0.282953
-0.515536
-1.156896
-2.428202
-1.962409
-1.084753
...
28.313940
30.914107
31.367740
30.518439
30.105593
29.758560
29.369368
ABCD
[1000 rows x 4 columns]
收起
2018-10-09 21:40:27
导入pandas
import pandas as pd
pd.read_csv 读取csv文件
df = pd.read_csv('Titanic.csv') ‘Titanic.csv’文件
pd.read_csv 读取xlsx文件
df _score = pd.read_execel('score.xlsx')
df_imdb = pd.read_csv('IMDB.csv')
df_imdb.columns
df_imdb[''Title] 电影名称 = df_imdb.Title
df_imdb[''Title] 电影名称 = df_imdb.Title
df_imdb['Title'].head(3) 前三个
df_imdb['Revenue(Millions)'].max()获取最高票房
df_imdb['Revenue (Millions)'].idxmax()
df_imdb[50:51]
将DataFrame 第50行数据的Director列取出,取一到6的数据的时候不会吧6取出来
df_imdb[50:51]['Director']选出的导演
第一个维度是行,第二维度是列,将50到56行(包含50和56)的导演和年份取出来
df_imdb.loc[50:56,['Director','Year']]
df_imdb.iloc[1:10,2:3] 将1到10行(不包含第10行,及2到3列 不包含3列)取出,使用整数索引caozuo
df _imdb[df_imdb['Revenue (Millions)',]>100]['Director']将票房大于5亿美元的电影选出来 支持
df[df['Genre'].str.contains('Thriller')].含有恐怖片的
收起
numpy、pandas实用总结(遍历、重复值、缺失值、异常值、数据过滤、数据清洗)
2019-07-24 16:06:30
前言
- 最近工作中经常实用pandas,然而,却发现自己对于pandas的掌握并没有想象中的好,很多pandas的函数和用法,自己都不是特别的熟练,特此总结一下最近经常会使用的pandas用途和函数,增强记忆。
pandas用途之DataFrame遍历
- 按照行对于DataFrame进行遍历,得到每一行,然后对于行进行操作,取每一列的单个数据
- for index,row in df.iterrows():
- print(row['列名'],row['列名'])
- 如果需要得到每一行的每列的数据进行计算,则需要row[‘列名’].iloc[0]取出行中的单个元素
- 因为,单纯的取出row[‘列名’]是Series类型,会带有Series类型的一些索引等内容。
pandas用途之DataFrame数据查询重复,去除重复
- DataFrame数据查询和取出重复元素,都是根据df.duplicated来实现的
- 使用df.duplicated()来查询重复值,返回布尔类型的值
- 参数:subset,设置判断重复的时候,按照哪些列进行判断。
- 可以使用列表的方式设置,subset = [“列a”,“列b”]
- 可以使用字符串的方式定义,subset = “列a”
- 参数:keep,设置判断重复的时候,保留项
- keep = “first”, 保留第一项
- keep = “last”, 保留最后一项
- keep = False,一个都不保留
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南