偏差与方差

1.定义

  偏差指的是算法在大型训练集上的错误率,方差指的是算法在测试集上的表现低于训练集的程度。

当方差很高时,说明模型过拟合;当偏差很高时,说门模型欠拟合。

2.减少偏差的方案

  偏差过高,既模型在训练集上的错误率太高说明模型欠拟合,减少偏差的方案如下:

  • 减少或去掉正则化(L1,L2,dropout):可减少偏差,但是会增加方差
  • 修改模型架构:同时影响偏差与方差
  • 修改输入特征
  • 加大模型规模:可以更好的拟合训练集,从而减少偏差;但可能增加方差

3.减少方差的方案

  方差过高,说明模型过拟合,既模型过于复杂,训练过程中形成了字典式的映射规则,减少方差的方案有:

  • 加入正则化:可减低方差,增加偏差
  • 加入提前终止
  • 减少模型规模
  • 添加更多的训练数据
  • 减少特征的数量
posted @ 2019-01-21 11:12  ordi  阅读(787)  评论(0编辑  收藏  举报