Python编程之数据结构与算法练习_011
练习内容:
1.创建一个类,实现优先级队列功能。
2.使用优先级队列求解IPO问题。
IPO问题:
输入:参数1:正数数组costs;参数2:正数数组profits;参数3:正数k;参数4,正数m
costs[i]表示i号项目的花费;
profits[i]表示i号项目在扣除花费之后还能挣到的钱;
k表示你不能并行,只能串行的最多做k个项目;
m表示你最初的资金;
说明:你每做完一个项目,马上获得的收益,可以支持你去做下一个项目。
输出:你最后获得的最大钱数。
1.实现优先级队列
1 __author__ = 'Orcsir' 2 3 4 class PriorityQueue: 5 def __init__(self, comparator=lambda x, y: x > y): 6 self._lst = [] 7 self.comparator = comparator 8 9 def __heap_insert(self, index): 10 array = self._lst 11 while index != 0 and self.comparator(array[index], array[(index - 1) >> 1]): 12 array[index], array[(index - 1) >> 1] = array[(index - 1) >> 1], array[index] 13 index = (index - 1) >> 1 14 15 def __heap_ify(self, index, size): 16 array = self._lst 17 left = 2 * index + 1 18 while left < size: 19 # 选出左右孩子中的最值 20 largest = left 21 right = left + 1 22 if right < size: 23 largest = left if self.comparator(array[left], array[right]) else right 24 25 if self.comparator(array[index], array[largest]): 26 break 27 28 array[index], array[largest] = array[largest], array[index] 29 index = largest 30 left = 2 * index + 1 31 32 def is_empty(self): 33 return True if len(self._lst) == 0 else False 34 35 def add(self, obj): 36 self._lst.append(obj) 37 self.__heap_insert(len(self._lst) - 1) 38 39 def pop(self): 40 self._lst[0], self._lst[-1] = self._lst[-1], self._lst[0] 41 obj = self._lst.pop() 42 self.__heap_ify(0, len(self._lst)) 43 return obj 44 45 def peek(self): 46 return self._lst[0] 47 48 poll = pop
2.创建数据类,用于描述每一个项目
1 class Project: 2 __slots__ = ("cost", "profit") 3 4 def __init__(self, cost, profit): 5 self.cost = cost 6 self.profit = profit
3.求解IPO问题。策略:建立两个优先级队列:最小花费堆,最大收益堆。根据资金持续解锁花费堆,并向收益堆中发货
1 def max_heap_comparator(obj1, obj2): 2 return obj1.profit > obj2.profit # 大根堆 3 4 5 def min_heap_comparator(obj1, obj2): 6 return obj1.cost < obj2.cost # 小根堆 7 8 9 def findMaximizedCapital(costs: list, profits: list, k: int, m: int) -> int: 10 min_cost_heap = PriorityQueue(min_heap_comparator) 11 max_profit_heap = PriorityQueue(max_heap_comparator) 12 13 for cost, profit in zip(costs, profits): 14 min_cost_heap.add(Project(cost, profit)) 15 16 for i in range(0, k): 17 while not min_cost_heap.is_empty() and min_cost_heap.peek().cost <= m: 18 obj = min_cost_heap.pop() 19 max_profit_heap.add(obj) 20 21 if max_profit_heap.is_empty(): 22 break 23 m += max_profit_heap.poll().profit 24 return m
4. 简单测试代码
1 if __name__ == '__main__': 2 costs = [2, 10, 14, 1] 3 profits = [5, 20, 8, 10] 4 k = 4 5 m = 15 6 ret = 0 7 ret = findMaximizedCapital(costs, profits, k, m) 8 print(ret)