Python编程之数据结构与算法练习_011

练习内容:

1.创建一个类,实现优先级队列功能。
2.使用优先级队列求解IPO问题。

 IPO问题:
 输入:参数1:正数数组costs;参数2:正数数组profits;参数3:正数k;参数4,正数m

 costs[i]表示i号项目的花费;
 profits[i]表示i号项目在扣除花费之后还能挣到的钱;
 k表示你不能并行,只能串行的最多做k个项目;
 m表示你最初的资金;

 说明:你每做完一个项目,马上获得的收益,可以支持你去做下一个项目。
 输出:你最后获得的最大钱数。

1.实现优先级队列

 1 __author__ = 'Orcsir'
 2 
 3 
 4 class PriorityQueue:
 5     def __init__(self, comparator=lambda x, y: x > y):
 6         self._lst = []
 7         self.comparator = comparator
 8 
 9     def __heap_insert(self, index):
10         array = self._lst
11         while index != 0 and self.comparator(array[index], array[(index - 1) >> 1]):
12             array[index], array[(index - 1) >> 1] = array[(index - 1) >> 1], array[index]
13             index = (index - 1) >> 1
14 
15     def __heap_ify(self, index, size):
16         array = self._lst
17         left = 2 * index + 1
18         while left < size:
19             # 选出左右孩子中的最值
20             largest = left
21             right = left + 1
22             if right < size:
23                 largest = left if self.comparator(array[left], array[right]) else right
24 
25             if self.comparator(array[index], array[largest]):
26                 break
27 
28             array[index], array[largest] = array[largest], array[index]
29             index = largest
30             left = 2 * index + 1
31 
32     def is_empty(self):
33         return True if len(self._lst) == 0 else False
34 
35     def add(self, obj):
36         self._lst.append(obj)
37         self.__heap_insert(len(self._lst) - 1)
38 
39     def pop(self):
40         self._lst[0], self._lst[-1] = self._lst[-1], self._lst[0]
41         obj = self._lst.pop()
42         self.__heap_ify(0, len(self._lst))
43         return obj
44 
45     def peek(self):
46         return self._lst[0]
47 
48     poll = pop

2.创建数据类,用于描述每一个项目

1 class Project:
2     __slots__ = ("cost", "profit")
3 
4     def __init__(self, cost, profit):
5         self.cost = cost
6         self.profit = profit

3.求解IPO问题。策略:建立两个优先级队列:最小花费堆,最大收益堆。根据资金持续解锁花费堆,并向收益堆中发货

 1 def max_heap_comparator(obj1, obj2):
 2     return obj1.profit > obj2.profit  # 大根堆
 3 
 4 
 5 def min_heap_comparator(obj1, obj2):
 6     return obj1.cost < obj2.cost  # 小根堆
 7 
 8 
 9 def findMaximizedCapital(costs: list, profits: list, k: int, m: int) -> int:
10     min_cost_heap = PriorityQueue(min_heap_comparator)
11     max_profit_heap = PriorityQueue(max_heap_comparator)
12 
13     for cost, profit in zip(costs, profits):
14         min_cost_heap.add(Project(cost, profit))
15 
16     for i in range(0, k):
17         while not min_cost_heap.is_empty() and min_cost_heap.peek().cost <= m:
18             obj = min_cost_heap.pop()
19             max_profit_heap.add(obj)
20 
21         if max_profit_heap.is_empty():
22             break
23         m += max_profit_heap.poll().profit
24     return m

4. 简单测试代码

1 if __name__ == '__main__':        
2     costs = [2, 10, 14, 1]
3     profits = [5, 20, 8, 10]
4     k = 4
5     m = 15
6     ret = 0
7     ret = findMaximizedCapital(costs, profits, k, m)
8     print(ret)

 

posted @ 2018-05-24 11:53  Orcsir  阅读(665)  评论(0编辑  收藏  举报