Solution -「CF 392C」Yet Another Number Sequence

Description

Link.

\(\sum_{i=1}^{n}\text{fibonacci}_{i}\times i^{k}=\sum_{i=1}^{n}(F_{i-1}+\text{fibonacci}_{i-2})\times i^{k}\)\(1\le n\le10^{17},1\le k\le40\)

Solution

简记 \(F_{i}=\text{fibonacci}_{i}\)。首先我们作个差:

\[ans_{n}=\sum_{i=1}^{n}F_{i}\times i^{k}=\sum_{i=1}^{n}(F_{i-1}+F_{i-2})\times i^{k} \\ ans_{n}-ans_{n-1}=F_{n}\times n^{k} \\ \]

然后:

\[\begin{aligned} ans_{n}&=ans_{n-1}+F_{n}\times n^{k} \\ &=ans_{n-1}+F_{n-1}\times(n-1+1)^{k}+F_{n-2}\times(n-2+2)^{k} \\ &=ans_{n-1}+\left(\sum_{i=0}^{k}A_{i-1}(i)\times\binom{k}{i}\right)+\left(\sum_{i=0}^{k}A_{i-2}(i)\times\binom{k}{i}\times2^{k-i} \right) \end{aligned} \]

后面的 dirty work 实在不想做,口胡选手选择放弃。

Oops, something went wrong.
posted @ 2021-04-03 21:58  cirnovsky  阅读(34)  评论(0编辑  收藏  举报