Solution Set -「ARC 111」
「ARC 111A」Simple Math 2
Link.
\(\lfloor \frac{10^N - kM^2}{M} \rfloor \equiv \lfloor \frac{10^N}{M} - kM \rfloor \equiv \lfloor \frac{10^N}{M} \rfloor - kM \equiv \lfloor \frac{10^N}{M} \rfloor \pmod M (k \in \mathbb{Z})\)
#include <iostream>
using i64 = long long;
int cpow ( int bas, i64 idx, const int p ) {
int res = 1;
while ( idx ) {
if ( idx & 1 ) res = ( i64 )res * bas % p;
bas = ( i64 )bas * bas % p, idx >>= 1;
}
return res;
}
int main () {
std::ios::sync_with_stdio ( 0 ); std::cin.tie ( 0 ); std::cout.tie ( 0 );
i64 n; int m; std::cin >> n >> m;
std::cout << ( cpow ( 10, n, m * m ) / m ) % m << '\n';
return 0;
}
「ARC 111B」Reversible Cards
Link.
nowcoder 原题。
#include<cstdio>
int n,cab[400010],fa[400010],a,b,ans;
int findset(int x)
{
if(fa[x]) return fa[x]=findset(fa[x]);
else return x;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%d%d",&a,&b);
a=findset(a);
b=findset(b);
if((a^b)&&(!cab[a]||!cab[b]))
{
fa[a]=b;
cab[b]|=cab[a];
ans++;
}
else if(!cab[a])
{
cab[a]=1;
ans++;
}
}
printf("%d\n",ans);
return 0;
}
「ARC 111C」Too Heavy
Link.
构造出一个操作序列。
先不考虑最小,只考虑构造出来。
参考某道 ABC D 题,直接连边。
\(i\rightarrow p_{i}\rightarrow p_{p_{i}}\rightarrow\cdots\rightarrow i\)。
\(1\ 2\) 分别表示 person、baggage。
再想,相当于我们想要让,\(1\) and \(2\) 一一对应。
一个 \((u,v)\) 的 \(2\)(即 \(v\))不能被交换只在 \(a_{u}\le b_{v}\)。
所以无解就是这个环中存在 \(a_{u}\le b_{v}\)。
剩下构造,先考虑满足规则。
贪心的选一个最大的 \(a_{i}\) 进行即可。
#include<queue>
#include<cstdio>
#include<algorithm>
using namespace std;
vector<pair<int,int> > ans;
int n,a[200010],b[200010],p[200010],rev[200010],vis[200010];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
for(int i=1;i<=n;++i) scanf("%d",&b[i]);
for(int i=1;i<=n;++i)
{
scanf("%d",&p[i]);
rev[p[i]]=i;
}
vector<int> per;
for(int i=1;i<=n;++i)
{
if(p[i]^i)
{
if(a[rev[i]]<=b[i])
{
printf("-1\n");
return 0;
}
if(!vis[i])
{
vis[i]=1;
per.clear();
per.push_back(i);
for(int j=p[i];j^i;j=p[j])
{
if(a[rev[j]]<=b[j])
{
printf("-1\n");
return 0;
}
vis[j]=1;
per.push_back(j);
}
int pos=0,val=0;
for(int j=0;j<per.size();++j)
{
if(a[per[pos]]<=a[per[j]])
{
pos=j;
val=per[j];
}
}
for(int j=pos+1;j<per.size();++j) ans.push_back(make_pair(val,per[j]));
for(int j=0;j<pos;++j) ans.push_back(make_pair(val,per[j]));
}
}
}
printf("%d\n",ans.size());
for(int i=0;i<ans.size();++i) printf("%d %d\n",ans[i].first,ans[i].second);
return 0;
}
「ARC 111D」Orientation
Link.
像个贪心?
-
\(c_{u}\neq c_{v}\)
- \(c_{u}>c_{v}\):\(\rightarrow\)
- \(c_{u}<c_{v}\):\(\leftarrow\)
-
\(c_{u}=c_{v}\)
在一个环里,深搜即可。
这 C D 放反了吧
#include<queue>
#include<cstdio>
#include<string>
#include<algorithm>
using namespace std;
vector<pair<int,int> > e[110];
vector<string> ans;
int n,m,c[110],eve[110][110],vis[110];
void dfs(int x)
{
vis[x]=1;
for(int i=1;i<=n;++i)
{
if(eve[x][i])
{
eve[i][x]=0;
if(!vis[i]) dfs(i);
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)
{
int u,v;
scanf("%d%d",&u,&v);
e[u].push_back(make_pair(v,i));
}
for(int i=1;i<=n;++i) scanf("%d",&c[i]);
ans.resize(m);
for(int i=1;i<=n;++i)
{
for(int j=0;j<e[i].size();++j)
{
int y=e[i][j].first,id=e[i][j].second-1;
if(c[i]>c[y]) ans[id]="->";
else if(c[i]<c[y]) ans[id]="<-";
else eve[i][y]=eve[y][i]=1;
}
}
for(int i=1;i<=n;++i)
{
for(int j=0;j<e[i].size();++j)
{
int y=e[i][j].first,id=e[i][j].second-1;
dfs(i);
if(eve[i][y]) ans[id]="->";
else if(eve[y][i]) ans[id]="<-";
}
}
for(int i=0;i<ans.size();++i) printf("%s\n",ans[i].c_str());
return 0;
}
「ARC 111E」Simple Math 3
Link.
即求:
题目说这玩意儿是 finite,然后(没加思考)跑到 U 群问成功丢人。
悲伤的故事,这告诉我们问前先思考。
原因是 \(i\) 大了 \([A+B\times i,A+C\times i]\) 的长度一定 \(\ge D\)。
具体来说是 \(i>\frac{D-2}{C-B}\) 的时候就完了。
那么式子改写为:
继续分析,此时的区间 \([A+B\times i,A+C\times i]\) 的长度小于 \(D\),里面最多有一个数是 \(D\) 的 multiple。
不会了 看题解 要类欧 不会了 抄板子 过题了
这种推不复杂考板的题好草人啊。。。。
upd:
official editorial 说可以用 AC lib 的 floor_sum
直接算。
屑行为 details。
#include<cstdio>
int T;
long long a,b,c,d;
long long dfs(long long a,long long b,long long c,long long n)
{
if(a>=c||b>=c) return dfs(a%c,b%c,c,n)+(a/c)*(n+1)*n/2+(b/c)*(n+1);
else if(a==0) return 0;
else return (a*n+b)/c*n-dfs(c,c-b-1,a,(a*n+b)/c-1);
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld%lld",&a,&b,&c,&d);
printf("%lld\n",(d-2)/(c-b)-dfs(c,a,d,(d-2)/(c-b))+dfs(b,a-1,d,(d-2)/(c-b)));
}
return 0;
}
「ARC 111A」Simple Math 2
Link.
missing。