Record - Dec. 1st, 2020 - Exam. REC

Prob. 1

Desc. & Link.

行走的形式是比较自由的,因为只要走到了最优答案处就可以不管了,所以不需要考虑游戏的结束。

考虑二分答案。

然后预处理出每个节点到 \(s\)(另一棵树就是 \(t\))的距离。

判断答案合法性:

首先枚举 \(A\) 树的每个节点(节点编号小于当前二分的答案),然后判断需要构成答案的 \(B\) 树上的节点距离 \(t\) 的距离的奇偶性是否一致即可。

但是这样有一个问题:我们如何确保这个答案是整个一轮移动过程中最大的?

仔细考虑一下,我们判断成功的依据是行走过程中所有和不超过我们当前二分的值,那么转为判断这个问题(意思就是前面降智了)。

因为这是一棵树,所以该走的路径一定会走。

因为我们枚举了 \(A\) 树中的节点,所以每次从哪两个节点走到 \(s\)\(t\) 是固定下来的。

草,直接 bfs 判断找可达最小值就行了。

\(\Theta(n\log_{2}^{2}n)\),我觉得不行,先写。

草卡卡常过了。

#pragma GCC optimize(1)
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#include <cstdio>
#include <queue>

using namespace std;

const int MAXN = 1e6 + 5;

namespace IO{
	const int sz=1<<22;
	char a[sz+5],b[sz+5],*p1=a,*p2=a,*t=b,p[105];
	inline char gc(){
		return p1==p2?(p2=(p1=a)+fread(a,1,sz,stdin),p1==p2?EOF:*p1++):*p1++;
	}
	template<class T> void gi(T& x){
		x=0; char c=gc();
		for(;c<'0'||c>'9';c=gc());
		for(;c>='0'&&c<='9';c=gc())
			x=x*10+(c-'0');
	}
	inline void flush(){fwrite(b,1,t-b,stdout),t=b; }
	inline void pc(char x){*t++=x; if(t-b==sz) flush(); }
	template<class T> void pi(T x,char c='\n'){
		if(x==0) pc('0'); int t=0;
		for(;x;x/=10) p[++t]=x%10+'0';
		for(;t;--t) pc(p[t]); pc(c);
	}
	struct F{~F(){flush();}}f; 
}
using IO::gi;
using IO::pi;

template<typename _T> _T MIN ( const _T x, const _T y ) { return x < y ? x : y; }

struct GraphSet {
	int to, nx;
	GraphSet ( int T = 0, int N = 0 ) { to = T, nx = N; }
} asA[MAXN * 2], asB[MAXN * 2];

int n, s, t, cntA, cntB, beginA[MAXN], beginB[MAXN], disA[MAXN], disB[MAXN], visA[MAXN], visB[MAXN];

void makeEdgeA ( const int u, const int v ) { asA[++ cntA] = GraphSet ( v, beginA[u] ), beginA[u] = cntA; }
void makeEdgeB ( const int u, const int v ) { asB[++ cntB] = GraphSet ( v, beginB[u] ), beginB[u] = cntB; }

void dfsA ( const int u, const int lst, const int dis ) {
	disA[u] = dis;
	for ( int i = beginA[u]; i; i = asA[i].nx ) {
		int v = asA[i].to;
		if ( v == lst )	continue;
		dfsA ( v, u, dis + 1 );
	}
}

void dfsB ( const int u, const int lst, const int dis ) {
	disB[u] = dis;
	for ( int i = beginB[u]; i; i = asB[i].nx ) {
		int v = asB[i].to;
		if ( v == lst )	continue;
		dfsB ( v, u, dis + 1 );
	}
}

void behaveOneSide ( int ark, int& mnA, int& mnB, int& ord, priority_queue<int, vector<int>, greater<int>>& align ) {
	int preSave = mnA;
	while ( ! align.empty () ) {
		int u = align.top ();
		if ( u + mnB > ark )	break;
		else	align.pop ();
		for ( int i = beginA[u]; i; i = asA[i].nx ) {
			int v = asA[i].to;
			if ( visA[v] )	continue;
			visA[v] = 1, align.push ( v );
			mnA = MIN ( mnA, v );
		}
	}
	if ( mnA == preSave )	++ ord;
	else	ord = 0;
}

void behaveAnotherSide ( int ark, int& mnA, int& mnB, int& ord, priority_queue<int, vector<int>, greater<int>>& align ) {
	int preSave = mnB;
	while ( ! align.empty () ) {
		int u = align.top ();
		if ( u + mnA > ark )	break;
		else	align.pop ();
		for ( int i = beginB[u]; i; i = asB[i].nx ) {
			int v = asB[i].to;
			if ( visB[v] )	continue;
			visB[v] = 1, align.push ( v );
			mnB = MIN ( mnB, v );
		}
	}
	if ( mnB == preSave )	++ ord;
	else	ord = 0;
}

priority_queue<int, vector<int>, greater<int>> oneQ, anotherQ;
bool check ( const int x ) {
	for ( int i = 1; i <= n; ++ i )	visA[i] = visB[i] = 0;
	for ( ; ! oneQ.empty (); oneQ.pop () ) ;
	for ( ; ! anotherQ.empty (); anotherQ.pop () ) ;
	oneQ.push ( s ), anotherQ.push ( t );
	visA[s] = 1, visB[t] = 1;
	int turn = 0, mnA = s, mnB = t, ord = 0;
	while ( mnA > 1 || mnB > 1 ) {
		turn ^= 1;
		if ( turn )	behaveOneSide ( x, mnA, mnB, ord, oneQ );
		else	behaveAnotherSide ( x, mnA, mnB, ord, anotherQ );
		if ( ord > 2 )	break;
	}
	if ( mnA == 1 && mnB == 1 )	return 1;
	else	return 0;
}

int solve ( int l, int r ) {
	while ( l + 1 < r ) {
		int mid = ( l + r ) >> 1;
		if ( check ( mid ) )	r = mid;
		else	l = mid;
	}
	return r;
}

int main () {
	int tCase;
	gi ( tCase );
	while ( tCase -- > 0 ) {
		gi ( n ), cntA = cntB = 0;
		for ( int i = 1; i <= n; ++ i )	beginA[i] = 0, beginB[i] = 0;
		for ( int i = 1, u, v; i < n; ++ i ) {
			gi ( u ), gi ( v );
			makeEdgeA ( u, v ), makeEdgeA ( v, u );
		}
		for ( int i = 1, u, v; i < n; ++ i ) {
			gi ( u ), gi ( v );
			makeEdgeB ( u, v ), makeEdgeB ( v, u );
		}
		gi ( s ), gi ( t );
		// dfsA ( s, 0, 0 ), dfsB ( t, 0, 0 );
		pi ( solve ( 1, n << 1 ) );
	}
	return 0;
}

Prob. 2

Desc. & Link.

\(n\) 很小,\(q\) 也很小。

感觉这个 \(n\) 不是 \(2^{n}\) 的算法也不是多项式算法欸。

但复杂度一定与 \(n\) 有关……

草这玩意儿折半是不是可以折半搜索?

我们可以搜出两边我们可以凑出的价格,分别记为 \(A_{i},i\in[1,C_{A}]\)\(B_{i},i\in[1,C_{B}]\)

然后让 \(A,B\) sorted。

然后枚举 \(A_{i}\),找到 \(B\) 中最大的能与 \(A_{i}\) 相加小于等于需要的值,然后算下贡献即可(bullshit)。

不是为什么用快读本地过数据提交瓦爆啊。。。

#include<cstdio>
#include<algorithm>
using namespace std;
void read(long long &hhh)
{
	long long x=0;
	char c=getchar();
	while(((c<'0')|(c>'9'))&(c^'-'))	c=getchar();
	if(c^'-')	x=c^'0';
	char d=getchar();
	while((d>='0')&(d<='9'))
	{
		x=(x<<3)+(x<<1)+(d^'0');
		d=getchar();
	}
	if(c^'-')	hhh=x;
	else	hhh=-x;
}
void writing(long long x)
{
	if(!x)	return;
	if(x>9)	writing(x/10);
	putchar((x%10)^'0');
}
void write(long long x)
{
	if(x<0)
	{
		putchar('-');
		x=-x;
	}
	else if(!x)
	{
		putchar('0');
		putchar('\n');
		return;
	}
	writing(x);
	putchar('\n');
}
long long n,q,endone,beginano,onesiz,onebuc[2000005],anosiz,anobuc[2000005],opl,opr,cud[45];
void dfs(long long now,long long cur)
{
	if(now==endone+1)	onebuc[++onesiz]=cur;
	else
	{
		dfs(now+1,cur+cud[now]);
		dfs(now+1,cur);
	}
}
void exdfs(long long now,long long cur)
{
	if(now==n+1)	anobuc[++anosiz]=cur;
	else
	{
		exdfs(now+1,cur+cud[now]);
		exdfs(now+1,cur);
	}
}
long long solve(long long mos)
{
	long long now=anosiz;
	long long res=0;
	for(long long i=1;i<=onesiz;++i)
	{
		while(now&&onebuc[i]+anobuc[now]>mos)	now--;
		res+=now;
	}
	return res;
}
int main()
{
//	read(n);
//	read(q);
	scanf("%lld%lld",&n,&q);
//	for(long long i=1;i<=n;++i)	read(cud[i]);
	for(long long i=1;i<=n;++i)	scanf("%lld",&cud[i]);
	endone=(n>>1);
	beginano=endone+1;
	dfs(1,0);
	exdfs(beginano,0);
	sort(onebuc+1,onebuc+onesiz+1);
	sort(anobuc+1,anobuc+anosiz+1);
	while(q--)
	{
		scanf("%lld%lld",&opl,&opr);
//		read(opl);
//		read(opr);
//		write(solve(opr)-solve(opl-1));
		printf("%lld\n",solve(opr)-solve(opl-1));
	}
	return 0;
}

Prob. 4

Desc. & Link.

相当于在树上对于每一个点找出找出一条以其为链顶的链。

\(f_{u}\)\(u\) 的答案。

\[f_{u}=\max_{v\in\text{son}(u)}\{f_{v}+(a_{u}-\text{dis}(u,v))\times b_{v},0\} \]

有乘法,然后题目中一堆常数。

😃 斜率优化

我们令 \(s_{u}=\text{dis}(1,u)\),然后

\[\begin{aligned} f_{u} &=\max_{v\in\text{son}(u)}\{f_{v}+(a_{u}+s_{u}-s_{v})\times b_{v},0\} \\ &=\max_{v\in\text{son}(u)}\{(a_{u}-s_{u})\times b_{v}+f_{v}-s_{v}\times b_{v},0\} \end{aligned} \]

\(y=f_{u},x=a_{u}-s_{u},k=b_{v},b=f_{v}-s_{v}\times b_{v}\),那么这个东西就是一个 \(y=kx+b\)

那么我们现在需要在子树里维护凸包,并且能够支持合并凸包和插入直线。

posted @ 2020-12-01 16:32  cirnovsky  阅读(120)  评论(0编辑  收藏  举报