Solution -「洛谷 P3773」「CTSC 2017」吉夫特

Description

Link.

求满足

\[\prod _{i=2}^{k} \binom{a_{b_{i-1}}}{a_{b_i}} \mod 2 = \binom{a_{b_1}}{a_{b_2}} \times \binom{a_{b_2}}{a_{b_3}} \times \cdots \binom{a_{b_{k-1}}}{a_{b_k}} \mod 2 > 0 \]

的子序列个数。

Solution

哇哦。

\[\begin{aligned} &\ \ \ \ \prod_{i=2}^{k}{a_{b_{i}-1}\choose a_{b_{i}}} \\ &\equiv\prod_{i=2}^{k}{\lfloor\frac{a_{b_{i}-1}}{2}\rfloor\choose\lfloor\frac{a_{b_{i}}}{2}\rfloor}\times{a_{b_{i}-1}\bmod2\choose a_{b_{i}}\bmod2} \end{aligned} (\operatorname{mod} 2) \]

式子后面的 \(\dbinom{a_{b_{i}-1}\bmod2}{a_{b_{i}\bmod2}}\) 一共有四种情况,其中只有 \(\dbinom{0}{1}=0\)。其他都为 \(1\)

意味着只要出现 \(a_{b_{i}-1}\equiv0\bmod2\)\(a_{b_{i}}\equiv1\bmod1\) 的情况,整个式子就为零了。

结论:\(\dbinom{n}{m}\equiv0\space(\operatorname{mod}2)\) 当且仅当 \(n\operatorname{bitand}m=m\)

证明(也许不是特别严谨):我们可以知道:

\[{n\choose m}={\lfloor\frac{n}{2}\rfloor\choose\lfloor\frac{m}{2}\rfloor}\times{n\bmod 2\choose m\bmod2}={\lfloor\frac{\lfloor\frac{n}{2}\rfloor}{2}\rfloor\choose\lfloor\frac{\lfloor\frac{m}{2}\rfloor}{2}\rfloor}\times {\lfloor\frac{n}{2}\rfloor\bmod2\choose\lfloor\frac{m}{2}\rfloor\bmod2}\times{n\bmod 2\choose m\bmod2}=\cdots \]

我们发现:

\[{\lfloor\frac{\lfloor\frac{\lfloor\frac{n}{2}\rfloor}{2}\rfloor}{\cdots}\rfloor\choose\lfloor\frac{\lfloor\frac{\lfloor\frac{m}{2}\rfloor}{2}\rfloor}{\cdots}\rfloor} \]

这一坨,就是在一直进行二进制移位,\(\operatorname{shr}1\)

那么我们可以得出一个结论:如果对于我们记 \((n)_{k}\) 表示 \(n\) 在二进制意义下的第 \(k\) 位。\((n)_{k}\in[0,1]\)

那么对于 \(\forall i\),有 \((n)_{i}=0\)\((m)_{i}=1\),那么 \(\dbinom{n}{m}\equiv0\space(\operatorname{mod} 2)\)

所以 \(n\operatorname{bitand}m=m\),证毕。

我们题目要求的是最后算出来是个奇数,那么就不能存在 \(a_{b_{i}-1}\operatorname{bitand}a_{b_{i}}=a_{b_{i}}\)

也就是 \(a_{b_{i}}\)\(a_{b_{i}-1}\) 的子集。

接下来我们可以设计一个 DP,我们设 \(f_{i}\) 为以 \(a_{i}\) 为开头的答案。

那么转移就是加法原理:

\[f_{i}=f_{i}+f_{j},j\in a_{i}\wedge t_{j}>i \]

其中 \(t_{i}\) 表示 \(i\) 在序列中的位置。

时间复杂度由二项式定理可知是 \(\Theta(3^{\log_{2}\max\{a_{i}\}})\)

#include <cstdio>
#define mod ( 1000000007 )

const int MAXN = 250000 + 5;

int N;
int val[MAXN], dp[MAXN];
int buc[MAXN];

int main( ){
	scanf( "%d", &N ); for( int i = 1; i <= N; ++ i ){ scanf( "%d", &val[i] ); buc[val[i]] = i; }
	int Ans = 0;
	for( int i = N; i; -- i ){
		dp[i] = 1;
		for( int j = val[i] & ( val[i] - 1 ); j; j = ( j - 1 ) & val[i] ){
			if( buc[j] > i )	dp[i] = ( dp[i] + dp[buc[j]] ) % mod;
		}
		Ans = ( Ans + dp[i] ) % mod;
	}
	printf( "%d\n", ( Ans - N + mod ) % mod );
	return 0;
}
posted @ 2020-11-25 13:03  cirnovsky  阅读(75)  评论(0编辑  收藏  举报