ACM2050
问题描述:
平面上有n条折线,问这些折线最多能将平面分割成多少块?
样例输入
1
2
样例输出
2
7
答案是:
2n ( 2n + 1 ) / 2 + 1 - 2n
= 2 n^2 – n + 1
当第N次添加时,前面已经有2N-2条直线了,所以第N次添加时,第2N-1条直线和第2N条直线都各能增加2*(n-1)+1 个平面。
所以第N次添加增加的面数是2[2(n-1) + 1] = 4n - 2 个。因此,总面数应该是
1 + 4n(n+1)/2 - 2n = 2n2 + 1
如果把每次加进来的平行边让它们一头相交
当第N次添加时,前面已经有2N-2条直线了,所以第N次添加时,第2N-1条直线和第2N条直线都各能增加2*(n-1)+1 个平面。
所以第N次添加增加的面数是2[2(n-1) + 1] = 4n - 2 个。因此,总面数应该是
1 + 4n(n+1)/2 - 2n = 2n2 + 1
如果把每次加进来的平行边让它们一头相交
则平面1、3已经合为一个面,因此,每一组平行线相交后,就会较少一个面,
在ACM2050前传中已经给出了直线的时平面数,而折线看成是两条直线,便可利用上一篇的公式了。
当第N次添加时,前面已经有2N-2条直线了,所以第N次添加时,第2N-1条直线和第2N条直线都各能增加2*(n-1)+1 个平面。
所以第N次添加增加的面数是2[2(n-1) + 1] = 4n - 2 个。因此,总面数应该是
1 + 4n(n+1)/2 - 2n = 2n^2 + 1
如果把每次加进来的平行边让它们一头相交
则平面1、3已经合为一个面,因此,每一组平行线相交后,就会较少一个面.
#include<stdio.h>
int main()
{
int T,n;
scanf("%d",&T);
while(T--&&scanf("%d",&n)!=EOF)
printf("%d\n",2*n*n-n+1);
return 0;
}