4.微服务的实践
微服务的实践
概述
要实际的应用微服务,需要解决以下问题:
-
客户端如何访问这些服务 ?
- API 网关
-
每个服务之间如何通信 ?
-
同步 对内RPC,对外REST
1.1 RPC
传输效率高
1.2 HTTP
跨防火墙
-
异步
2.1 消息队列
-
-
如此多的服务,如何实现 ?
- 服务注册与发现
-
服务挂了,如何解决 ?
- (备份方案,应急处理机制)
客户端如何访问这些服务
原来的 Monolithic 方式开发,所有的服务都是本地的,UI 可以直接调用,现在按功能拆分成独立的服务,跑在独立的一般都在独立的虚拟机上的 Java 进程了。客户端 UI 如何访问他?
后台有 N 个服务,前台就需要记住管理 N 个服务,一个服务 下线、更新、升级,前台就要重新部署,这明显不服务我们拆分的理念,特别当前台是移动应用的时候,通常业务变化的节奏更快。
另外,N 个小服务的调用也是一个不小的网络开销。还有一般微服务在系统内部,通常是无状态的,用户登录信息和权限管理最好有一个统一的地方维护管理(OAuth)。
所以,一般在后台 N 个服务和 UI 之间一般会一个代理或者叫 API Gateway
,他的作用包括:
- 提供统一服务入口,让微服务对前台透明
- 聚合后台的服务,节省流量,提升性能
- 提供安全,过滤,流控等API管理功能
其实这个 API Gateway
可以有很多广义的实现办法,可以是一个软硬一体的盒子,也可以是一个简单的 MVC 框架,甚至是一个 Node.js
的服务端。他们最重要的作用是为前台(通常是移动应用)提供后台服务的聚合,提供一个统一的服务出口,解除他们之间的耦合,不过 API Gateway
也有可能成为 单点故障 点或者性能的瓶颈。
每个服务之间如何通信
所有的微服务都是独立的 Java 进程跑在独立的虚拟机上,所以服务间的通信就是 IPC(Inter Process Communication),已经有很多成熟的方案。现在基本最通用的有两种方式:
同步调用
- REST(JAX-RS,Spring Boot)
- RPC(Thrift, Dubbo)
同步调用比较简单,一致性强,但是容易出调用问题,性能体验上也会差些,特别是调用层次多的时候。一般 REST 基于 HTTP,更容易实现,更容易被接受,服务端实现技术也更灵活些,各个语言都能支持,同时能跨客户端,对客户端没有特殊的要求,只要封装了 HTTP 的 SDK 就能调用,所以相对使用的广一些。RPC 也有自己的优点,传输协议更高效,安全更可控,特别在一个公司内部,如果有统一个的开发规范和统一的服务框架时,他的开发效率优势更明显些。就看各自的技术积累实际条件,自己的选择了。
异步消息调用
- Kafka
- Notify
- MessageQueue
异步消息的方式在分布式系统中有特别广泛的应用,他既能减低调用服务之间的耦合,又能成为调用之间的缓冲,确保消息积压不会冲垮被调用方,同时能保证调用方的服务体验,继续干自己该干的活,不至于被后台性能拖慢。不过需要付出的代价是一致性的减弱,需要接受数据 最终一致性;还有就是后台服务一般要实现 幂等性,因为消息送出于性能的考虑一般会有重复(保证消息的被收到且仅收到一次对性能是很大的考验);最后就是必须引入一个独立的 Broker
如此多的服务,如何实现?
在微服务架构中,一般每一个服务都是有多个拷贝,来做负载均衡。一个服务随时可能下线,也可能应对临时访问压力增加新的服务节点。服务之间如何相互感知?服务如何管理?
这就是服务发现的问题了。一般有两类做法,也各有优缺点。基本都是通过 Zookeeper 等类似技术做服务注册信息的分布式管理。当服务上线时,服务提供者将自己的服务信息注册到 ZK(或类似框架),并通过心跳维持长链接,实时更新链接信息。服务调用者通过 ZK 寻址,根据可定制算法,找到一个服务,还可以将服务信息缓存在本地以提高性能。当服务下线时,ZK 会发通知给服务客户端。
基于客户端的服务注册与发现
优点是架构简单,扩展灵活,只对服务注册器依赖。缺点是客户端要维护所有调用服务的地址,有技术难度,一般大公司都有成熟的内部框架支持,比如 Dubbo。
基于服务端的服务注册与发现
优点是简单,所有服务对于前台调用方透明,一般在小公司在云服务上部署的应用采用的比较多。
服务挂了,如何解决?
前面提到,Monolithic 方式开发一个很大的风险是,把所有鸡蛋放在一个篮子里,一荣俱荣,一损俱损。而分布式最大的特性就是网络是不可靠的。通过微服务拆分能降低这个风险,不过如果没有特别的保障,结局肯定是噩梦。所以当我们的系统是由一系列的服务调用链组成的时候,我们必须确保任一环节出问题都不至于影响整体链路。相应的手段有很多:
-
重试机制 (网络不可靠)
-
限流 (API 网关,流量太大,例如过滤器,请求过多不在处理,“您的网络不通,请重试!?”)
-
熔断机制 (超过多少秒时间,中断服务,减少压力)
-
负载均衡
-
降级(base理论,保证核心业务,本地缓存)
HTTP和RPC的异同
传输协议
RPC,可以基于TCP协议,也可以基于HTTP协议
HTTP,基于HTTP协议
传输效率
RPC,使用自定义的TCP协议,可以让请求报文体积更小,或者使用HTTP2协议,也可以很好的减少报文的体积,提高传输效率
HTTP,如果是基于HTTP1.1的协议,请求中会包含很多无用的内容,如果是基于HTTP2.0,那么简单的封装一下是可以作为一个RPC来使用的,这时标准RPC框架更多的是服务治理
性能消耗,主要在于序列化和反序列化的耗时
RPC,可以基于thrift实现高效的二进制传输
HTTP,大部分是通过json来实现的,字节大小和序列化耗时都比thrift要更消耗性能
负载均衡
RPC,基本都自带了负载均衡策略
HTTP,需要配置Nginx,HAProxy来实现
服务治理(下游服务新增,重启,下线时如何不影响上游调用者)
RPC,能做到自动通知,不影响上游
HTTP,需要事先通知,修改Nginx/HAProxy配置
总结:
RPC主要用于公司内部的服务调用,性能消耗低,传输效率高,服务治理方便。HTTP主要用于对外的异构环境,浏览器接口调用,APP接口调用,第三方接口调用等。