Grafana-(1).yaml安装

安装Grafana

Grafana介绍

grafana 是一个可视化面包,有着非常漂亮的图片和布局展示,功能齐全的度量仪表盘和图形化编辑器,支持Graphite、Zabbix、InfluxDB、Prometheus、OpenTSDB、Elasticasearch等作为数据源,比Prometheus自带的图标展示功能强大很多,更加灵活,有丰富的插件

我们这里使用deployment持久化安装grafana

cat >>grafana_deployment.yaml <<EOF
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
  name: grafana
  namespace: kube-system
  labels:
    app: grafana
spec:
  revisionHistoryLimit: 10
  template:
    metadata:
      labels:
        app: grafana
    spec:
      containers:
      - name: grafana
        image: grafana/grafana:5.3.4
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 3000
          name: grafana
        env:
        - name: GF_SECURITY_ADMIN_USER
          value: admin
        - name: GF_SECURITY_ADMIN_PASSWORD
          value: abcdocker
        readinessProbe:
          failureThreshold: 10
          httpGet:
            path: /api/health
            port: 3000
            scheme: HTTP
          initialDelaySeconds: 60
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 30
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /api/health
            port: 3000
            scheme: HTTP
          periodSeconds: 10
          successThreshold: 1
          timeoutSeconds: 1
        resources:
          limits:
            cpu: 300m
            memory: 1024Mi
          requests:
            cpu: 300m
            memory: 1024Mi
        volumeMounts:
        - mountPath: /var/lib/grafana
          subPath: grafana
          name: storage
      securityContext:
        fsGroup: 472
        runAsUser: 472
      volumes:
      - name: storage
        persistentVolumeClaim:
          claimName: grafana
EOF

这里使用了grafana 5.3.4的镜像,添加了监控检查、资源声明,比较重要的变量是GF_SECURITY_ADMIN_USER和GF_SECURITY_ADMIN_PASSWORD为grafana的账号和密码。

由于grafana将dashboard、插件这些数据保留在/var/lib/grafana目录下,所以我们这里需要做持久化,同时要针对这个目录做挂载声明,由于5.3.4版本用户的userid和groupid都有所变化,所以这里添加了一个securityContext设置用户ID

image_1ddnv749l17k7ucdel1m4v17jjea.png-56.5kB

现在我们添加一个pv和pvc用于绑定grafana

cat >>grafana_volume.yaml <<EOF
apiVersion: v1
kind: PersistentVolume
metadata:
  name: grafana
spec:
  capacity:
    storage: 10Gi
  accessModes:
  - ReadWriteOnce
  persistentVolumeReclaimPolicy: Recycle
  nfs:
    server: 192.168.2.7
    path: /data/k8s
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: grafana
  namespace: kube-system
spec:
  accessModes:
  - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi
EOF

这里配置依旧使用NFS进行挂载使用

现在我们还需要创建一个service,使用NodePort

cat >>grafana_svc.yaml<<EOF
apiVersion: v1
kind: Service
metadata:
  name: grafana
  namespace: kube-system
  labels:
    app: grafana
spec:
  type: NodePort
  ports:
    - port: 3000
  selector:
    app: grafana
EOF

由于5.1(可以选择5.1之前的docker镜像,可以避免此类错误)版本后groupid更改,同时我们将/var/lib/grafana挂载到pvc后,目录拥有者可能不是grafana用户,所以我们还需要添加一个Job用于授权目录

cat >>grafana_job.yaml <<EOF
apiVersion: batch/v1
kind: Job
metadata:
  name: grafana-chown
  namespace: kube-system
spec:
  template:
    spec:
      restartPolicy: Never
      containers:
      - name: grafana-chown
        command: ["chown", "-R", "472:472", "/var/lib/grafana"]
        image: busybox
        imagePullPolicy: IfNotPresent
        volumeMounts:
        - name: storage
          subPath: grafana
          mountPath: /var/lib/grafana
      volumes:
      - name: storage
        persistentVolumeClaim:
          claimName: grafana
EOF

配置grafana

1.第一次创建grafana需要添加数据源

2.数据源添加完毕后,接下来添加New dashboard

这里面的模板都是公共的,可以免费使用

导入模板,会自动跳转到配置页面

3.保存模板

这里无法显示是由于模板定义的标签,我们prometheus并没有这个数据元,所以说我们要对模板进行修改!

在修改之前我们先设置一下时区,grafana默认走的是浏览器时区,但是prometheus使用的是UTC时区

grafana模板修改

前面的步骤必须和我相同,否则这里可能会无法出现值

1.集群内存使用率

首先我们进行编辑 Cluster memory usage

  • 计算方式就是(整个集群的内存-(整个集群剩余的内存以及Buffer和Cached))/整
(sum(node_memory_MemTotal_bytes) - sum(node_memory_MemFree_bytes + node_memory_Buffers_bytes+node_memory_Cached_bytes)) / sum(node_memory_MemTotal_bytes) * 100

这里要说明一点,这里填写的是PromSQL,也就是说是可以在prometheus查询到的。 如果查询不到grafana也是会获取不到数据的

这里在prometheus是可以获取到的

2.集群cpu使用率

Cluster memory usage 配置如下

sum(sum by (container_name)( rate(container_cpu_usage_seconds_total{image!=""}[1m] ) )) / count(node_cpu_seconds_total{mode="system"}) * 100

3.集群文件系统使用率

Cluster filesystem usage

(sum(node_filesystem_size_bytes{device="tmpfs"}) - sum(node_filesystem_free_bytes{device="tmpfs"}) ) / sum(node_filesystem_size_bytes{device="tmpfs"}) * 100

4.集群Pod cpu使用率

sum by (pod_name)(rate(container_cpu_usage_seconds_total{image!="", pod_name!=""}[1m]))

图列格式:{{ pod_name }}

5.集群pod 内存使用率

sort_desc(sum (container_memory_usage_bytes{image!="", pod_name!=""}) by(pod_name))

图列格式:{{ pod_name }}

6.集群Pod 网络监控

1.入口流量
sort_desc(sum by (pod_name) (rate (container_network_receive_bytes_total{name!=""}[1m]) ))

2.出口流量
sort_desc(sum by (pod_name) (rate (container_network_transmit_bytes_total{name!=""}[1m]) ))

监控时间为1分钟

posted @ 2020-01-14 14:21  薄荷少年郎微微凉  阅读(1418)  评论(0编辑  收藏  举报