110. Balanced Binary Tree
原题链接:https://leetcode.com/problems/balanced-binary-tree/description/
判断一棵树是否是二叉树,本身不难,但是想要写出高效简洁的代码还是有点难度的:
/**
* Created by clearbug on 2018/2/26.
*/
public class Solution {
static class TreeNode {
int val;
TreeNode left;
TreeNode right;
public TreeNode(int val) {
this.val = val;
}
}
public static void main(String[] args) {
Solution s = new Solution();
// test1
TreeNode root = new TreeNode(3);
root.left = new TreeNode(9);
root.right = new TreeNode(20);
root.right.left = new TreeNode(15);
root.right.right = new TreeNode(7);
System.out.println(s.height(root));
System.out.println(s.isBalanced(root));
System.out.println(s.height2(root));
System.out.println(s.isBalanced2(root));
// test2
TreeNode root2 = new TreeNode(1);
root2.left = new TreeNode(2);
root2.right = new TreeNode(2);
root2.left.left = new TreeNode(3);
root2.left.right = new TreeNode(3);
root2.left.left.left = new TreeNode(4);
root2.left.left.right = new TreeNode(4);
System.out.println(s.height(root2));
System.out.println(s.isBalanced(root2));
System.out.println(s.height2(root2));
System.out.println(s.isBalanced2(root2));
// test3
TreeNode root3 = new TreeNode(1);
root3.left = new TreeNode(2);
root3.right = new TreeNode(2);
root3.left.left = new TreeNode(3);
root3.right.right = new TreeNode(3);
root3.left.left.left = new TreeNode(4);
root3.right.right.right = new TreeNode(4);
System.out.println(s.height(root3));
System.out.println(s.isBalanced(root3));
System.out.println(s.height2(root3));
System.out.println(s.isBalanced2(root3));
}
/**
* 方法一:最普通的方法,就是对比左右子树的高度看是否符合平衡二叉树
*
* @param root
* @return
*/
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
}
int leftHeight = height(root.left);
int rightHeight = height(root.right);
return Math.abs(leftHeight - rightHeight) < 2 && isBalanced(root.left) && isBalanced(root.right);
}
private int height(TreeNode root) {
if (root == null) {
return 0;
}
int leftHeight = height(root.left);
int rightHeight = height(root.right);
return Math.max(leftHeight, rightHeight) + 1;
}
/**
* 方法二:在方法一的基础上进行优化,从底部向上依次遍历是否符合平衡二叉树
*
* @param root
* @return
*/
public boolean isBalanced2(TreeNode root) {
return height2(root) != -1;
}
private int height2(TreeNode root) {
if (root == null) {
return 0;
}
int leftHeight = height2(root.left);
if (leftHeight == -1) {
return -1;
}
int rightHeight = height2(root.right);
if (rightHeight == -1) {
return -1;
}
if (Math.abs(leftHeight - rightHeight) > 1) {
return -1;
}
return Math.max(leftHeight, rightHeight) + 1;
}
}