骑士游历问题

由于最近在学习回溯法,所以跟回溯法相关的问题尽量都看下吧。
骑士游历问题的完整描述见:http://blog.csdn.net/sb___itfk/article/details/50905275

我的思路

我的实现如下,还是最简单最粗暴的解法:

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * Created by clearbug on 2018/2/26.
 */
public class Solution {

    public static void main(String[] args) {
        Solution s = new Solution();
        long startTime = System.currentTimeMillis();
        List<List<String>> res = s.traverse(5, 0, 0);
        int i = 1;
        for (List<String> item : res) {
            System.out.println("第 " + i + " 种走法:");
            for (String line : item) {
                System.out.println(line);
            }
            i++;
        }
        long endTime = System.currentTimeMillis();
        System.out.println("运行耗时:" + (endTime - startTime) + " ms");
    }

    public List<List<String>> traverse(int N, int sr, int sc) {
        int[][] board = new int[N][N];
        board[sr][sc] = 1;

        List<List<String>> res = new ArrayList<>();
        dfs(board, sr, sc, res);
        return res;
    }

    private void dfs(int[][] board, int sr, int sc, List<List<String>> res) {
        if (check(board)) {
            List<String> lines = new ArrayList<>();
            for (int i = 0; i < board.length; i++) {
                lines.add(Arrays.toString(board[i]));
            }
            res.add(lines);
        }

        int[] dr = {2, 2, -2, -2, 1, 1, -1, -1};
        int[] dc = {1, -1, 1, -1, 2, -2, 2, -2};

        for (int i = 0; i < 8; i++) {
            int[][] newBoard = deepthCopy(board);
            int cr = sr + dr[i];
            int cc = sc + dc[i];
            if (cr >= 0 && cr < board.length && cc >= 0 && cc < board.length && board[cr][cc] == 0) {
                newBoard[cr][cc] = newBoard[sr][sc] + 1;
                dfs(newBoard, cr, cc, res);
            }
        }

    }

    private int[][] deepthCopy(int[][] board) {
        int[][] res = new int[board.length][board.length];
        for (int i = 0; i < board.length; i++) {
            for (int j = 0; j < board.length; j++) {
                res[i][j] = board[i][j];
            }
        }
        return res;
    }
    
    private boolean check(int[][] board) {
        for (int i = 0; i < board.length; i++) {
            for (int j = 0; j < board.length; j++) {
                if (board[i][j] == 0) {
                    return false;
                }
            }
        }
        return true;
    }

}

运行结果如下:

301 种走法:
[1, 16, 21, 6, 3]
[10, 5, 2, 15, 20]
[17, 22, 11, 4, 7]
[12, 9, 24, 19, 14]
[23, 18, 13, 8, 25]
第 302 种走法:
[1, 16, 11, 6, 3]
[10, 5, 2, 21, 12]
[15, 22, 17, 4, 7]
[18, 9, 24, 13, 20]
[23, 14, 19, 8, 25]
第 303 种走法:
[1, 16, 11, 6, 3]
[10, 5, 2, 17, 12]
[15, 22, 19, 4, 7]
[20, 9, 24, 13, 18]
[23, 14, 21, 8, 25]
第 304 种走法:
[1, 18, 11, 6, 3]
[10, 5, 2, 17, 12]
[19, 22, 13, 4, 7]
[14, 9, 24, 21, 16]
[23, 20, 15, 8, 25]
运行耗时:4073 ms

当 n = 5 时,运行时间已经上 4 秒了。。。可以虽然可以正确运行,但是效率并不 ok
那么,还是去看看 sb___itfk 这位老铁的解法吧:http://blog.csdn.net/sb___itfk/article/details/50905275

sb___itfk 解法

sb___itfk 老铁所描述的算法思路就是:预算下一步的下一步有几种走法,然后走走法最小的那一步。话说起来有点绕,还是看代码,然后我把我的代码和他的代码都写了进来,并运行后比较运行时间:

import java.util.*;

/**
 * Created by clearbug on 2018/2/26.
 */
public class Solution {

    class TwoIntMap {
        private int next;
        private int nextAvailable;

        public TwoIntMap(int next, int nextAvailable) {
            this.next = next;
            this.nextAvailable = nextAvailable;
        }

        public int getNext() {
            return next;
        }

        public void setNext(int next) {
            this.next = next;
        }

        public int getNextAvailable() {
            return nextAvailable;
        }

        public void setNextAvailable(int nextAvailable) {
            this.nextAvailable = nextAvailable;
        }
    }

    public static void main(String[] args) {
        Solution s = new Solution();

        for (int i = 5; i < 9; i++) {
            System.out.println(i + "================================================================================");
            long startTime = System.currentTimeMillis();
            List<String> res = s.traverse(i, 0, 0);
            for (String line : res) {
                System.out.println(line);
            }
            long endTime = System.currentTimeMillis();
            System.out.println("traverse 运行耗时:" + (endTime - startTime) + " ms");

            long startTime2 = System.currentTimeMillis();
            List<String> res2 = s.traverse2(i, 0, 0);
            for (String line : res2) {
                System.out.println(line);
            }
            long endTime2 = System.currentTimeMillis();
            System.out.println("traverse2 运行耗时:" + (endTime2 - startTime2) + " ms");
        }
    }

    public List<String> traverse(int N, int sr, int sc) {
        int[][] board = new int[N][N];
        board[sr][sc] = 1;

        List<String> res = new ArrayList<>();
        dfs(board, sr, sc, res);
        return res;
    }

    public List<String> traverse2(int N, int sr, int sc) {
        int[][] board = new int[N][N];
        board[sr][sc] = 1;

        List<String> res = new ArrayList<>();
        dfs2(board, sr, sc, res);
        return res;
    }

    private boolean dfs(int[][] board, int sr, int sc, List<String> res) {
        if (check(board)) {
            for (int i = 0; i < board.length; i++) {
                res.add(Arrays.toString(board[i]));
            }
            return true;
        }

        int[] dr = {2, 2, -2, -2, 1, 1, -1, -1};
        int[] dc = {1, -1, 1, -1, 2, -2, 2, -2};

        for (int i = 0; i < 8; i++) {
            int[][] newBoard = deepthCopy(board);
            int cr = sr + dr[i];
            int cc = sc + dc[i];
            if (cr >= 0 && cr < board.length && cc >= 0 && cc < board.length && board[cr][cc] == 0) {
                newBoard[cr][cc] = newBoard[sr][sc] + 1;
                if (dfs(newBoard, cr, cc, res)) {
                    return true;
                }
            }
        }

        return false;
    }

    private boolean dfs2(int[][] board, int sr, int sc, List<String> res) {
        if (check(board)) {
            for (int i = 0; i < board.length; i++) {
                res.add(Arrays.toString(board[i]));
            }
            return true;
        }

        int[] dr = {2, 2, -2, -2, 1, 1, -1, -1};
        int[] dc = {1, -1, 1, -1, 2, -2, 2, -2};

        List<TwoIntMap> twoIntMaps = new ArrayList<>();

        for (int i = 0; i < 8; i++) {
            int[][] newBoard = deepthCopy(board);
            int cr = sr + dr[i];
            int cc = sc + dc[i];
            if (cr >= 0 && cr < board.length && cc >= 0 && cc < board.length && board[cr][cc] == 0) {
                newBoard[cr][cc] = newBoard[sr][sc] + 1;
                twoIntMaps.add(new TwoIntMap(i, nextStepAvailableDirection(newBoard, cr, cc)));
            }
        }

        twoIntMaps.sort(Comparator.comparingInt(TwoIntMap::getNextAvailable));
        for (TwoIntMap twoIntMap : twoIntMaps) {
            int[][] newBoard = deepthCopy(board);
            int cr = sr + dr[twoIntMap.getNext()];
            int cc = sc + dc[twoIntMap.getNext()];
            newBoard[cr][cc] = newBoard[sr][sc] + 1;
            if (dfs2(newBoard, cr, cc, res)) {
                return true;
            }

        }

        return false;
    }

    private int[][] deepthCopy(int[][] board) {
        int[][] res = new int[board.length][board.length];
        for (int i = 0; i < board.length; i++) {
            for (int j = 0; j < board.length; j++) {
                res[i][j] = board[i][j];
            }
        }
        return res;
    }

    private boolean check(int[][] board) {
        for (int i = 0; i < board.length; i++) {
            for (int j = 0; j < board.length; j++) {
                if (board[i][j] == 0) {
                    return false;
                }
            }
        }
        return true;
    }

    private int nextStepAvailableDirection(int[][] board, int sr, int sc) {
        int res = 0;

        int[] dr = {2, 2, -2, -2, 1, 1, -1, -1};
        int[] dc = {1, -1, 1, -1, 2, -2, 2, -2};

        for (int i = 0; i < 8; i++) {
            int cr = sr + dr[i];
            int cc = sc + dc[i];
            if (cr >= 0 && cr < board.length && cc >= 0 && cc < board.length && board[cr][cc] == 0) {
                res++;
            }
        }

        return res;
    }

}

运行结果:

5================================================================================
[1, 6, 15, 10, 21]
[14, 9, 20, 5, 16]
[19, 2, 7, 22, 11]
[8, 13, 24, 17, 4]
[25, 18, 3, 12, 23]
traverse 运行耗时:216 ms
[1, 22, 11, 16, 7]
[12, 17, 8, 21, 10]
[25, 2, 23, 6, 15]
[18, 13, 4, 9, 20]
[3, 24, 19, 14, 5]
traverse2 运行耗时:54 ms
6================================================================================
[1, 12, 21, 28, 7, 10]
[22, 29, 8, 11, 20, 27]
[13, 2, 23, 4, 9, 6]
[30, 35, 32, 17, 26, 19]
[33, 14, 3, 24, 5, 16]
[36, 31, 34, 15, 18, 25]
traverse 运行耗时:6646 ms
[1, 10, 31, 20, 7, 12]
[32, 19, 8, 11, 30, 21]
[9, 2, 25, 36, 13, 6]
[18, 33, 16, 27, 22, 29]
[3, 26, 35, 24, 5, 14]
[34, 17, 4, 15, 28, 23]
traverse2 运行耗时:1 ms
7================================================================================
[1, 28, 37, 40, 25, 30, 9]
[38, 41, 26, 29, 10, 35, 24]
[27, 2, 39, 36, 23, 8, 31]
[42, 19, 44, 17, 32, 11, 34]
[45, 48, 3, 22, 5, 14, 7]
[20, 43, 18, 47, 16, 33, 12]
[49, 46, 21, 4, 13, 6, 15]
traverse 运行耗时:474 ms
[1, 30, 11, 46, 27, 32, 9]
[12, 45, 28, 31, 10, 37, 26]
[29, 2, 49, 38, 47, 8, 33]
[42, 13, 44, 19, 34, 25, 36]
[3, 16, 41, 48, 39, 22, 7]
[14, 43, 18, 5, 20, 35, 24]
[17, 4, 15, 40, 23, 6, 21]
traverse2 运行耗时:1 ms
8================================================================================

从 i = 5,6,7 的运行情况,使用预测算法的确节省了很多时间,效率提高了几十到上百倍。然而,i = 8 的运行结果迟迟不出来,我都运行了半个小时了还没运算出来。。。等运算完毕了再回来更新吧!

参考

http://blog.csdn.net/sb___itfk/article/details/50905275

posted @   optor  阅读(745)  评论(0编辑  收藏  举报
编辑推荐:
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· 现代计算机视觉入门之:什么是视频
· 你所不知道的 C/C++ 宏知识
阅读排行:
· 不到万不得已,千万不要去外包
· C# WebAPI 插件热插拔(持续更新中)
· 会议真的有必要吗?我们产品开发9年了,但从来没开过会
· 【译】我们最喜欢的2024年的 Visual Studio 新功能
· 如何打造一个高并发系统?
点击右上角即可分享
微信分享提示