CSP-J2020题解
A 优秀的拆分
显然每个数只有一种分法。从大到小枚举\(2\)的正整数次幂,能拆则拆。
若未拆完,则是无解情况。
#include <bits/stdc++.h>
using namespace std;
int ans[50], l;
int main()
{
freopen("power.in", "r", stdin);
freopen("power.out", "w", stdout);
int n;
scanf("%d", &n);
for (int i = 24; i && n; i--)
if (n >= (1 << i))
n -= (1 << i), ans[++l] = (1 << i);
if (n)
{
puts("-1"); return 0;
}
for (int i = 1; i <= l; i++)
printf("%d ", ans[i]);
return 0;
}
B 直播获奖
观察到\(a_i\)不超过\(600\),可以直接开桶记录每个分数有多少人。
枚举分数线。若当前人数大于等于获奖人数,该分数线即为答案。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5, M = 600;
int n, w;
int a[M + 5];
int main()
{
freopen("live.in", "r", stdin);
freopen("live.out", "w", stdout);
scanf("%d%d", &n, &w);
for (int i = 1; i <= n; i++)
{
int x, s = 0, t = max(1, i * w / 100);
scanf("%d", &x), a[x]++;
for (int j = M; j >= 0; j--)
{
s += a[j];
if (s >= t) { printf("%d ", j); break; }
}
}
return 0;
}
C 表达式
首先建出表达式树。显然变量为叶子节点,符号为非叶子节点。记\(f_i\)为\(i\)节点改变是否有影响,转移按符号分类讨论即可。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 5;
int e[N][2], vl[N], id[N], a[N], st[N], f[N];
int n, top, cnt;
char s[N];
void dfs(int x)
{
int y0 = e[x][0], y1 = e[x][1];
if (f[x] == -1)
{
if (vl[y0] && vl[y1]) dfs(y0), dfs(y1);
if (!vl[y0] && vl[y1]) dfs(y0);
if (vl[y0] && !vl[y1]) dfs(y1);
}
else if (f[x] == -2)
{
if (!vl[y0] && !vl[y1]) dfs(y0), dfs(y1);
if (vl[y0] && !vl[y1]) dfs(y0);
if (!vl[y0] && vl[y1]) dfs(y1);
}
else if (f[x] == -3) dfs(y0);
else f[x] = 1;
}
int main()
{
int q, x, y, l;
gets(s), l = strlen(s);
scanf("%d", &n);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 0; i < l; i++)
if (s[i] == 'x')
{
i++;
for (x = 0; s[i] != ' ' && i < l; i++) x = x * 10 + s[i] - '0';
vl[id[x] = st[++top] = ++cnt] = a[x];
}
else if (s[i] == '&')
cnt++, vl[cnt] = vl[e[cnt][0] = st[top--]] & vl[e[cnt][1] = st[top--]], f[st[++top] = cnt] = -1;
else if (s[i] == '|')
cnt++, vl[cnt] = vl[e[cnt][0] = st[top--]] | vl[e[cnt][1] = st[top--]], f[st[++top] = cnt] = -2;
else if (s[i] == '!')
cnt++, vl[cnt] = !vl[e[cnt][0] = st[top--]], f[st[++top] = cnt] = -3;
dfs(cnt);
for (scanf("%d", &q); q--;)
scanf("%d", &x), printf("%d\n", vl[cnt] ^ f[id[x]]);
return 0;
}
D 方格取数
设\(f_{i,j}\)为小能走到\((i,j)\)这个点答案最大能多少。
注意到小能只能在横方向只能向右走,可以先枚举j。
转移时先将初值从左边转移。
再从上往下、从下往上更新\(f\)。(其中一次需要开临时数组)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1005;
int a[N][N];
ll f[N][N], g[N][N];
int n, m;
int main()
{
freopen("number.in", "r", stdin);
freopen("number.out", "w", stdout);
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
scanf("%d", &a[i][j]);
for (int i = 0; i <= n + 1; i++)
for (int j = 0; j <= m + 1; j++)
g[i][j] = f[i][j] = -1145141919810;
f[1][1] = a[1][1];
for (int j = 1; j <= m; j++)
{
for (int i = 1; i <= n; i++) g[i][j] = f[i][j] = max(f[i][j], f[i][j - 1] + a[i][j]);
for (int i = 1; i <= n; i++) f[i][j] = max(f[i][j], f[i - 1][j] + a[i][j]);
for (int i = n; i; i--) g[i][j] = max(g[i][j], g[i + 1][j] + a[i][j]);
for (int i = 1; i <= n; i++) f[i][j] = max(f[i][j], g[i][j]);
}
printf("%lld\n", f[n][m]);
return 0;
}