openGauss源码解析(169)
openGauss源码解析:AI技术(16)
8.3.4 关键源码解析
慢SQL发现工具在项目中的源代码路径为:openGauss-server/src/gausskernel/dbmind/tools/sqldiag。
1. 项目结构
慢SQL发现工具文件结构如表8-6所示。
表8-6 慢SQL发现工具结构
文件结构 | 说明 |
preprocessing.py | SQL预处理方法 |
requirements.txt | 依赖第三方库列表,通过pip –r安装 |
main.py | 入口文件 |
test | 测试文件集合 |
algorithm | 项目核心代码 |
algorithm/sql_similarity | 相似度计算方法 |
2. 总体流程解析
算法的总体流程在main.py中给出,根据传来的参数实例化算法模型后,进行训练、增量训练、预测等。main函数的核心代码如下所示。
def main(args):
logging.basicConfig(level=logging.INFO)
# 实例化算法模型,模板化模型或DNN模型
model = SQLDiag(args.model, args.csv_file, get_config(args.config_file))
# 训练模型
if args.mode == 'train':
# fit训练数据,提取模板或特征
model.fit()
# 模型保存
model.save(args.model_path)
# 预测
elif args.mode == 'predict':
# 加载模型
model.load(args.model_path)
# 标准化预测数据,获取结果
pred_result = model.transform()
# 保存输出结果
ResultSave().save(pred_result, args.predicted_file)
logging.info('predict result in saved in {}'.format(args.predicted_file))
# 更新模型
elif args.mode == 'finetune':
model.fine_tune(args.model_path)
model.save(args.model_path)
3. 模板化算法源码解析
通过模板化方法,实现在不获取SQL语句执行计划的前提下,依据语句逻辑相似度与历史执行记录,预测SQL语句的执行时间。主要源码如下:
class TemplateModel(AbstractModel):
# 初始化算法参数
def __init__(self, params):
super().__init__(params)
self.bias = 1e-5
self.__hash_table = dict(INSERT=dict(), UPDATE=dict(), DELETE=dict(), SELECT=dict(),
OTHER=dict())
self.time_list_size = params.time_list_size
self.knn_number = params.knn_number
self.similarity_algorithm = calc_sql_distance(params.similarity_algorithm)
def fit(self, data):
# 对每条sql语句按照粗、细粒度进行标准化,生成模板
for sql, duration_time in data:
if not self.check_illegal_sql(sql):
continue
fine_template, rough_template = get_sql_template(sql)
sql_prefix = fine_template.split()[0]
if sql_prefix not in self.__hash_table:
sql_prefix = 'OTHER'
# 更新粗粒度模板框架
if rough_template not in self.__hash_table[sql_prefix]:
self.__hash_table[sql_prefix][rough_template] = dict()
self.__hash_table[sql_prefix][rough_template]['info'] = dict()
# 更新细粒度模板框架
if fine_template not in self.__hash_table[sql_prefix][rough_template]['info']:
self.__hash_table[sql_prefix][rough_template]['info'][fine_template] = \
dict(time_list=[], count=0, mean_time=0.0, iter_time=0.0)
# 更新每个细粒度模板的执行时间、迭代时间、sql语句的计数。
…
self.__hash_table[sql_prefix][rough_template]['info'][fine_template]['count'] += 1
…
# 基于细粒度模板更新粗粒度模板信息
for sql_prefix, sql_prefix_info in self.__hash_table.items():
…
def transform(self, data):
predict_time_list = {}
for sql in data:
# sql语句不属于'INSERT', 'SELECT', 'UPDATE', 'DELETE', 'CREATE', 'DROP'任何一个,预测时间默认为-1
if not self.check_illegal_sql(sql):
predict_time_list[sql] = -1
continue
…
# 若预测的sql所对应的粗粒度模板不存在,执行模板相似度计算方法获取与所有粗粒度模板的相似度
if rough_template not in self.__hash_table[sql_prefix]:
for local_rough_template, local_rough_template_info in self.__hash_table[
sql_prefix].items():
similarity_info.append(
(self.similarity_algorithm(rough_template, local_rough_template), local_rough_template_info['mean_time']))
# 若预测的sql所对应的细粒度模板不存在,执行模板相似度计算方法获取与所有细粒度模板的相似度
else:
for local_fine_template, local_fine_template_info in \
self.__hash_table[sql_prefix][rough_template][
'info'].items():
similarity_info.append(
(self.similarity_algorithm(fine_template, local_fine_template),
local_fine_template_info['iter_time']))
# 基于KNN思想计算sql执行时间
topn_similarity_info = heapq.nlargest(self.knn_number, similarity_info)
…
return predict_time_list