【BZOJ】2705: [SDOI2012]Longge的问题
【题意】给定n,求∑gcd(i,n),(1<=i<=n),n<=2^32
【算法】数论(欧拉函数,gcd)
【题解】批量求gcd的题目常常可以反过来枚举gcd的值。
记f(g)为gcd(i,n)=g的i的个数,则有ans=∑f(g)*g,g|n。
gcd(i,n)=g即gcd(i/g,n/g)=1,f(g)转化为φ(n/g)。
所以,ans=∑g*φ(n/g),g|n。
当然,这种纯数论问题也可以用公式法直接求解。
引用自:clover_hxy
gcd分解:d|gcd(a,b)=d|a&&d|b
过程中,[d|i]表示d是否整除i。
(图片来源:clover_hxy)
解释:第一步,用公式∑d|nφ(d)=n转化出欧拉函数。第二步,分解gcd,d|gcd(i,n)=d|i&&d|n,选择枚举d|n并依次判断d|i是否成立。
第三步,交换顺序。第四步,对于每个d,1~n中能被d整除的数字个数为n/d,得到ans=φ(d)*n/d,d|n。这个公式和之前的一致。
具体实现:
1.枚举1~sqrt(n)寻找n的因数
2.枚举2~sqrt(n)寻找n的素因数,n每次除尽已枚举到的质因数,最后x>1则x是大质数。
#include<cstdio> #include<algorithm> #define ll long long using namespace std; ll n,ans; ll phi(ll x){ ll num=x; for(ll i=2;i*i<=x;i++)if(x%i==0){ num=num*(i-1)/i; while(x%i==0)x/=i; } if(x>1)num=num*(x-1)/x; return num; } int main(){ scanf("%lld",&n); ans=0; for(ll i=1;i*i<=n;i++)if(n%i==0){ ans+=phi(n/i)*i; if(i*i!=n)ans+=phi(i)*n/i; } printf("%lld",ans); return 0; }