【BZOJ】2151 种树

【算法】贪心+堆

【题意】n个数字的序列,要求选择互不相邻的k个数字使和最大。

【题解】

贪心,就是按一定顺序选取即可最优,不会反悔。

考虑第一个数字选择权值最大的,那么它相邻的两个数字就不能选择,那么我们可以把这三个数字视为一个整体。操作为将pre[pre[x]]和x和suc[suc[x]]连接起来。

由于可能依然有选择相邻两个数字的可能性,将中间的权值置为A[pre[x]]+A[suc[x]]-A[x],这个权值记录在中间,但实际上代表相邻三个数字的新权值。

若再次选择这个区间,那么就是把区间更新到周围五个数字了(这里的数字有可能已经是一段区间),如此可以不断扩大。

 

贪心原理:若没有间隔种的限制,每次都取大就是最优的。那么多了这个限制之后,取大依然优但却会影响旁边两个数字的选择。

为了使我们依然能贪心,就设置一个反悔的机会,即设置一个新权值。那么如果非要选择旁边两个就相当于选择中间的权值两次,每次把影响区间扩大2并视之为一个数字。

因为贪心就不会反悔的性质,既然会选择这个决策就一定不会悔改。这个反悔的机会实质上是扩大你选择数字的影响范围,一旦扩大就一定不会反悔,因为一定是最优的。

 

每次出现新权值用堆维护。记得开始先特判无法种k棵的情况,因为后面很难判断。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=200010;
struct cyc{
    int num,ord;
    bool operator < (const cyc &x)const
    {return num<x.num;}
}qp;
priority_queue<cyc>q;

int a[maxn],pre[maxn],suc[maxn],n,k;
bool f[maxn];
void del(int x)
{
    f[x]=1;
    suc[pre[x]]=suc[x];
    pre[suc[x]]=pre[x];
    suc[x]=pre[x]=0;
}
int main()
{
    scanf("%d%d",&n,&k);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        q.push((cyc){a[i],i});
        pre[i]=i-1;suc[i]=i+1;
    }
    pre[1]=n;suc[n]=1;
    int ans=0;
    if(k>n/2){printf("Error!");return 0;}
    for(int i=1;i<=k;i++)
    {
        while(f[q.top().ord])q.pop();
        qp=q.top();q.pop();
        ans+=qp.num;
        int A=pre[qp.ord],B=suc[qp.ord];
        a[qp.ord]=a[A]+a[B]-qp.num;
        del(pre[qp.ord]);del(suc[qp.ord]);
        q.push((cyc){a[qp.ord],qp.ord});
    }
    printf("%d",ans);    
    return 0;
}
View Code

 

posted @ 2017-06-28 14:17  ONION_CYC  阅读(402)  评论(0编辑  收藏  举报