HDU3518 Boring counting
后缀数组
要求统计出现两次以上不重叠的子串,其实就是统计出现两次以上不重叠的后缀的前缀,不难想到height数组。
相邻的后缀只有包含和被包含关系,或者不在同一块内,重复出现的前缀肯定在这块的height里,所以我们统计连续块内最小和最大的sa相减判断是否满足条件即可。
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
#define __fastIn ios::sync_with_stdio(false), cin.tie(0)
#define pb push_back
using namespace std;
using LL = long long;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int ret = 0, w = 0; char ch = 0;
while(!isdigit(ch)){
w |= ch == '-', ch = getchar();
}
while(isdigit(ch)){
ret = (ret << 3) + (ret << 1) + (ch ^ 48);
ch = getchar();
}
return w ? -ret : ret;
}
template <typename A>
inline A __lcm(A a, A b){ return a / __gcd(a, b) * b; }
template <typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 2000;
string s;
LL ans;
namespace SuffixArray{
string s;
int sa[N], t[N], t2[N], c[N], rank[N], height[N];
void build(int m, int n){
int *x = t, *y = t2;
for(int i = 0; i < m; i ++) c[i] = 0;
for(int i = 0; i < n; i ++) c[x[i] = s[i]] ++;
for(int i = 0; i < m; i ++) c[i] += c[i - 1];
for(int i = n - 1; i >= 0; i --) sa[--c[x[i]]] = i;
for(int k = 1; k <= n; k <<= 1){
int p = 0;
for(int i = n - k; i < n; i ++) y[p++] = i;
for(int i = 0; i < n; i ++){
if(sa[i] >= k) y[p++] = sa[i] - k;
}
for(int i = 0; i < m; i ++) c[i] = 0;
for(int i = 0; i < n; i ++) c[x[y[i]]] ++;
for(int i = 0; i < m; i ++) c[i] += c[i - 1];
for(int i = n - 1; i >= 0; i --) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = 1, x[sa[0]] = 0;
for(int i = 1; i < n; i ++){
x[sa[i]] = y[sa[i - 1]] == y[sa[i]] && sa[i - 1] + k < n &&
sa[i] + k < n && y[sa[i - 1] + k] == y[sa[i] + k] ? p - 1 : p ++;
}
if(p >= n) break;
m = p;
}
int k = 0;
for(int i = 0; i < n; i ++) rank[sa[i]] = i;
for(int i = 0; i < n; i ++){
if(!rank[i]) continue;
if(k) k --;
int j = sa[rank[i] - 1];
while(s[i + k] == s[j + k]) k ++;
height[rank[i]] = k;
}
}
}
using SuffixArray::build;
using SuffixArray::sa;
using SuffixArray::height;
bool solve(int k){
bool good = false;
int l = INF, r = 0;
for(int i = 1; i < s.size(); i ++){
if(height[i] >= k){
l = min(l, min(sa[i], sa[i - 1]));
r = max(r, max(sa[i], sa[i - 1]));
}
else{
if(r - l >= k) ans ++, good = true;
l = INF, r = 0;
}
}
if(r - l >= k) ans ++, good = true;
return good;
}
int main(){
__fastIn;
while(cin >> s && s != "#"){
SuffixArray::s = s;
build(128, (int)s.size());
ans = 0;
for(int i = 1; i <= (s.size() + 1) / 2; i ++){
if(!solve(i)) break;
}
cout << ans << endl;
}
return 0;
}