Codeforces Round #236 (Div. 2)E. Strictly Positive Matrix(402E)

                          E. Strictly Positive Matrix
 

You have matrix a of size n × n. Let's number the rows of the matrix from 1 to n from top to bottom, let's number the columns from 1 ton from left to right. Let's use aij to represent the element on the intersection of the i-th row and the j-th column.

Matrix a meets the following two conditions:

  • for any numbers i, j (1 ≤ i, j ≤ n) the following inequality holds: aij ≥ 0;
  • .

Matrix b is strictly positive, if for any numbers i, j (1 ≤ i, j ≤ n) the inequality bij > 0 holds. You task is to determine if there is such integer k ≥ 1, that matrix ak is strictly positive.

Input

The first line contains integer n (2 ≤ n ≤ 2000) — the number of rows and columns in matrix a.

The next n lines contain the description of the rows of matrix a. The i-th line contains n non-negative integers ai1, ai2, ..., ain (0 ≤ aij ≤ 50). It is guaranteed that .

Output

If there is a positive integer k ≥ 1, such that matrix ak is strictly positive, print "YES" (without the quotes). Otherwise, print "NO" (without the quotes).

Sample test(s)
input
2
1 0
0 1
output
NO
input
5
4 5 6 1 2
1 2 3 4 5
6 4 1 2 4
1 1 1 1 1
4 4 4 4 4
output
YES

 题意: 矩阵matrix[n][n], 对角线上元素不全为0, 其他元素的值大于等于0. 问是否存在k 使得 矩阵的k次幂之后 元素的值全部大于0.

设 A = B2  , B 为一邻接矩阵, 则A[i][j] 的实际意义为 从i到j 经过一个点(不包含i, j)的路径的个数。。。对于k次幂就是经过k-1个点的路径的个数了。

 要使 A[i][j] 大于0 ,(有向图) i 到j必须连通。。 A[j][i] > 0 && A[i][j] < 0 ,则i, j之间必能形成回路。

可以理解为 从任意点开始都可以遍历整个有向图。

建两个图(正向 反向),分别跑dfs。。判断一下即可。 

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 vector<int>G1[2015];
 4 vector<int>G2[2015];
 5 int  c1, c2;
 6 bool vis[2015];
 7 void dfs1(int r)
 8 {
 9     c1++;
10     vis[r] = true;
11     for (int i = 0; i < G1[r].size(); i++)
12     {
13         if (!vis[G1[r][i]])
14             dfs1(G1[r][i]);
15     }
16 }
17 void dfs2(int r)
18 {
19     c2++;
20     vis[r] = true;
21     for (int i = 0; i < G2[r].size(); i++)
22     {
23         if (!vis[G2[r][i]])
24             dfs2(G2[r][i]);
25     }
26 }
27 int main()
28 {
29     #ifndef ONLINE_JUDGE
30         freopen("in.txt","r",stdin);
31     #endif
32     int n;
33     while (~scanf ("%d", &n))
34     {
35         for (int i = 0; i <= n; i++)
36         {
37             G1[i].clear();
38             G2[i].clear();
39         }
40         for (int i = 0; i < n; i++)
41         {
42             for (int j = 0; j < n; j++)
43             {
44                 int x;
45                 scanf ("%d", &x);
46                 if (i != j && x)
47                 {
48                     G1[i+1].push_back(j+1);
49                     G2[j+1].push_back(i+1);
50                 }
51             }
52         }
53         c1 = c2 = 0;
54         memset(vis, false, sizeof(vis));
55         dfs1(1);
56         memset(vis, false, sizeof(vis));
57         dfs2(1);
58         printf("%s\n", (c1 == n && c2 == n) ? "YES" : "NO");
59     }
60     return 0;
61 }

 

posted @ 2015-04-10 21:53  PlasticSpirit  阅读(190)  评论(0编辑  收藏  举报