Codeforces - ZeptoLab Code Rush 2015 - D. Om Nom and Necklace:字符串

D. Om Nom and Necklace
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

One day Om Nom found a thread with n beads of different colors. He decided to cut the first several beads from this thread to make a bead necklace and present it to his girlfriend Om Nelly.

Om Nom knows that his girlfriend loves beautiful patterns. That's why he wants the beads on the necklace to form a regular pattern. A sequence of beads S is regular if it can be represented as S = A + B + A + B + A + ... + A + B + A, where A and B are some bead sequences, " + " is the concatenation of sequences, there are exactly 2k + 1 summands in this sum, among which there are k + 1 "A" summands and k "B" summands that follow in alternating order. Om Nelly knows that her friend is an eager mathematician, so she doesn't mind if A or B is an empty sequence.

Help Om Nom determine in which ways he can cut off the first several beads from the found thread (at least one; probably, all) so that they form a regular pattern. When Om Nom cuts off the beads, he doesn't change their order.

Input

The first line contains two integers n, k (1 ≤ n, k ≤ 1 000 000) — the number of beads on the thread that Om Nom found and number k from the definition of the regular sequence above.

The second line contains the sequence of n lowercase Latin letters that represent the colors of the beads. Each color corresponds to a single letter.

Output

Print a string consisting of n zeroes and ones. Position i (1 ≤ i ≤ n) must contain either number one if the first i beads on the thread form a regular sequence, or a zero otherwise.

Sample test(s)
Input
7 2
bcabcab
Output
0000011
Input
21 2
ababaababaababaababaa
Output
000110000111111000011
Note

In the first sample test a regular sequence is both a sequence of the first 6 beads (we can take A = "", B = "bca"), and a sequence of the first 7 beads (we can take A = "b", B = "ca").

In the second sample test, for example, a sequence of the first 13 beads is regular, if we take A = "aba", B = "ba".


 

 

思路:可以将AB看成一个串(设为C),然后问题就等价为:判断字符串是否由k个连续的C串以及C串的一个前缀组成(前缀可以为空)。

然后用Z算法求出z数组。

然后从1到n枚举C串的长度(设为len),判断z[0],z[len],z[len*2],....,z[len*(k-1)]的值是否都不小于len,如果都符合就标记最后一个匹配位置为true。

输出的时候维护一个last指针,表示C串的前缀最多能扩展到哪个位置。

复杂度o(n).


 

 

 1 #include <iostream>
 2 #include <stdio.h>
 3 using namespace std;
 4 #define MAXN 1000010
 5 
 6 char s[MAXN];
 7 bool ans[MAXN] = {0};
 8 int z[MAXN] = {0};
 9 
10 int n, k;
11 bool check(int len)
12 {
13     for(int i = 0, cnt = 0; i < n && cnt < k; i += len, cnt++)
14     {
15         if(z[i] < len)
16             return false;
17     }
18     return true;
19 }
20 
21 int main()
22 {
23     freopen("in.txt", "r", stdin);
24     cin >> n >> k;
25 
26     scanf("%s", s);
27 
28     // Z[i] is the length of the longest substring starting from S[i] which is also a prefix of S
29     // s[0,n-1]
30     int L = 0, R = 0;
31     for(int i = 1; i < n; i++)
32     {
33         if(i > R)
34         {
35             L = R = i;
36             while(R < n && s[R - L] == s[R]) R++;
37             z[i] = R - L;
38             R--;
39         }
40         else
41         {
42             int k = i - L;
43             if(z[k] < R - i + 1) z[i] = z[k];
44             else
45             {
46                 L = i;
47                 while(R < n && s[R - L] == s[R]) R++;
48                 z[i] = R - L;
49                 R--;
50             }
51         }
52     }
53     z[0] = n;
54 
55 
56     // 枚举AB串的长度
57     for(int len = 1; len <= n; len++)
58     {
59         if(len * k > n)
60             break;
61         // 判断长度为len的AB串是否符合
62         if(check(len))
63         {
64             int last = len * k;
65             ans[last - 1] = true;
66         }
67     }
68 
69     int last = -1;
70     for(int i = 0; i < n; i++)
71     {
72         if(ans[i] || i<=last)
73             printf("1");
74         else
75             printf("0");
76         if(ans[i] && i < n - 1)
77         {
78             int len = (i+1)/k;
79             last = max(last, min(i+len, i+z[i+1]));
80         }
81     }
82 
83     return 0;
84 }

 

posted @ 2015-04-06 01:14  PlasticSpirit  阅读(349)  评论(0编辑  收藏  举报