matplotlib 散点图scatter
最近开始学习python编程,遇到scatter函数,感觉里面的参数不知道什么意思于是查资料,最后总结如下:
1、scatter函数原型
2、其中散点的形状参数marker如下:
3、其中颜色参数c如下:
4、基本的使用方法如下:
- #导入必要的模块
- import numpy as np
- import matplotlib.pyplot as plt
- #产生测试数据
- x = np.arange(1,10)
- y = x
- fig = plt.figure()
- ax1 = fig.add_subplot(111)
- #设置标题
- ax1.set_title('Scatter Plot')
- #设置X轴标签
- plt.xlabel('X')
- #设置Y轴标签
- plt.ylabel('Y')
- #画散点图
- ax1.scatter(x,y,c = 'r',marker = 'o')
- #设置图标
- plt.legend('x1')
- #显示所画的图
- plt.show()
结果如下:
5、当scatter后面参数中数组的使用方法,如s,当s是同x大小的数组,表示x中的每个点对应s中一个大小,其他如c,等用法一样,如下:
(1)、不同大小
- #导入必要的模块
- import numpy as np
- import matplotlib.pyplot as plt
- #产生测试数据
- x = np.arange(1,10)
- y = x
- fig = plt.figure()
- ax1 = fig.add_subplot(111)
- #设置标题
- ax1.set_title('Scatter Plot')
- #设置X轴标签
- plt.xlabel('X')
- #设置Y轴标签
- plt.ylabel('Y')
- #画散点图
- sValue = x*10
- ax1.scatter(x,y,s=sValue,c='r',marker='x')
- #设置图标
- plt.legend('x1')
- #显示所画的图
- plt.show()
(2)、不同颜色
- #导入必要的模块
- import numpy as np
- import matplotlib.pyplot as plt
- #产生测试数据
- x = np.arange(1,10)
- y = x
- fig = plt.figure()
- ax1 = fig.add_subplot(111)
- #设置标题
- ax1.set_title('Scatter Plot')
- #设置X轴标签
- plt.xlabel('X')
- #设置Y轴标签
- plt.ylabel('Y')
- #画散点图
- cValue = ['r','y','g','b','r','y','g','b','r']
- ax1.scatter(x,y,c=cValue,marker='s')
- #设置图标
- plt.legend('x1')
- #显示所画的图
- plt.show()
结果:
(3)、线宽linewidths
- #导入必要的模块
- import numpy as np
- import matplotlib.pyplot as plt
- #产生测试数据
- x = np.arange(1,10)
- y = x
- fig = plt.figure()
- ax1 = fig.add_subplot(111)
- #设置标题
- ax1.set_title('Scatter Plot')
- #设置X轴标签
- plt.xlabel('X')
- #设置Y轴标签
- plt.ylabel('Y')
- #画散点图
- lValue = x
- ax1.scatter(x,y,c='r',s= 100,linewidths=lValue,marker='o')
- #设置图标
- plt.legend('x1')
- #显示所画的图
- plt.show()
注: 这就是scatter基本的用法。
补充:
颜色映射(colormap)是一系列颜色,它们从起始颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律,例如,你可能用较浅的颜色来显示较小的值,并使用较深的颜色来显示较大的值。
模块pyplot内置了一组颜色映射。要使用这些颜色映射,你需要告诉pyplot该如何设置数据集中每个点的颜色。下面演示了如何根据每个点的y值来设置其颜色:
1
|
plt.scatter(x_values, y_values, c = y_values, cmap = plt.cm.Blues,edgecolor = "none" ,s = 40 ) |
我们将参数c设置成了一个y值列表,并使用参数cmap告诉pyplot使用哪个颜色映射。这些代码将y值较小的点显示为浅蓝色,并将y值较大的点显示为深蓝色,生成的图形如图。