二叉树深度优先和广度优先过程的Python描述

二叉树深度优先(DFS)和广度优先(BFS)

深度优先遍历:对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次。二叉树的深度优先遍历的非递归的通用做法是采用栈,要特别注意的是,二叉树的深度优先遍历比较特殊,可以细分为先序遍历、中序遍历、后序遍历。具体说明如下:

  • 先序(根)遍历:对任一子树,先访问根,然后遍历其左子树,最后遍历其右子树。
  • 中序(根)遍历:对任一子树,先遍历其左子树,然后访问根,最后遍历其右子树。
  • 后序(根)遍历:对任一子树,先遍历其左子树,然后遍历其右子树,最后访问根。

DFS的Python算法描述:

def depth_tree(tree_node):
    """
    # 深度优先过程
    :param tree_node:
    :return:
    """
    if tree_node is not None:
        print(tree_node._data)
        if tree_node._left is not None:
            return depth_tree(tree_node._left)
        if tree_node._right is not None:
            return depth_tree(tree_node._right)

注:scrapy默认是通过深度优先来实现的。

广度优先遍历:又叫层次遍历,从上往下对每一层依次访问,在每一层中,从左往右(也可以从右往左)访问结点,访问完一层就进入下一层,直到没有结点可以访问为止。广度优先遍历的非递归的通用做法是采用队列。

BFS的算法描述:

def level_queue(root):
    """
    # 广度优先过程
    :param root:
    :return:
    """
    if root is None:
        return
    my_queue = []
    node = root
    my_queue.append(node)
    while my_queue:
        node = my_queue.pop(0)
        print(node.elem)
        if node.lchild is not None:
            my_queue.append(node.lchild)
        if node.rchild is not None:
            my_queue.append(node.rchild)

区别:

通常深度优先搜索法遍历时不全部保留结点,遍历完后的结点从栈中弹出删去,这样,一般在栈中存储的结点数就是二叉树的深度值,因此它占用空间较少。所以,当搜索树的结点较多,用其它方法易产生内存溢出时,深度优先搜索不失为一种有效的求解方法。 但深度优先搜素算法有回溯操作(即有入栈、出栈操作),运行速度慢。

广度优先搜索算法,一般需存储产生的所有结点,占用的存储空间要比深度优先搜索大得多,因此,程序设计中,必须考虑溢出和节省内存空间的问题。但广度优先搜索法一般无回溯操作,即入栈和出栈的操作,所以运行速度比深度优先搜索要快些。

posted @ 2019-01-29 22:40  onefine  阅读(966)  评论(0编辑  收藏  举报