LeetCode 1253. Reconstruct a 2-Row Binary Matrix
1、原题描述
Given the following details of a matrix with n
columns and 2
rows :
- The matrix is a binary matrix, which means each element in the matrix can be
0
or1
. - The sum of elements of the 0-th(upper) row is given as
upper
. - The sum of elements of the 1-st(lower) row is given as
lower
. - The sum of elements in the i-th column(0-indexed) is
colsum[i]
, wherecolsum
is given as an integer array with lengthn
.
Your task is to reconstruct the matrix with upper
, lower
and colsum
.
Return it as a 2-D integer array.
If there are more than one valid solution, any of them will be accepted.
If no valid solution exists, return an empty 2-D array.
Example 1:
Input: upper = 2, lower = 1, colsum = [1,1,1] Output: [[1,1,0],[0,0,1]] Explanation: [[1,0,1],[0,1,0]], and [[0,1,1],[1,0,0]] are also correct answers.
Example 2:
Input: upper = 2, lower = 3, colsum = [2,2,1,1] Output: []
Example 3:
Input: upper = 5, lower = 5, colsum = [2,1,2,0,1,0,1,2,0,1] Output: [[1,1,1,0,1,0,0,1,0,0],[1,0,1,0,0,0,1,1,0,1]]
Constraints:
1 <= colsum.length <= 10^5
0 <= upper, lower <= colsum.length
0 <= colsum[i] <= 2
2、简要翻译:
构建一个两行多列的数据,第一行的和为upper,第二行的和为lower,第i 列的和为 colsum[i] 。 如果不存在这样的数组返回空值
3、代码分析:
- 如果upper + lower 不等于 colsum的和,那么返回空。
- 如果 colsum 中2的个数大于upper或者 lower,返回空
- 从左到右,尽量保持上下均衡的前提下中插入1。(当colums[i]==1的时候,如果lower >= upper 插下,其余情况插上)
4、解答代码:
public List<List<Integer>> reconstructMatrix(int upper, int lower, int[] colums) { int sum = 0; int numof2 = 0; for (int colum : colums) { sum += colum; if (colum == 2) { numof2++; } } List<List<Integer>> result = new ArrayList<>(); if (sum != upper + lower || numof2 > Math.min(upper, lower)) { return result; } List<Integer> upperList = new ArrayList<>(); List<Integer> lowerList = new ArrayList<>(); result.add(upperList); result.add(lowerList); for (int colum : colums) { if (colum == 0) { upperList.add(0); lowerList.add(0); } else if (colum == 2) { upperList.add(1); upper--; lowerList.add(1); lower--; } else { if (upper > lower) { upperList.add(1); lowerList.add(0); upper--; } else { upperList.add(0); lowerList.add(1); lower--; } } } return result; }