[转载]C# 指针之美

   将C#图像库的基础部分开源了(https://github.com/xiaotie/GebImage)。这个库比较简单,且离成熟还有一段距离,但它是一种新的开发模式的探索:以指针和非托管内存为主的C#程序开发。     我许多项目都是在这个库基础上的开发,实战证明了它的有效。从今天起,将断断续续(太忙了)的写一系列文章来介绍这种开发方法,介绍基于此的图像编程。本文便是第一篇。     以指针和非托管内存为主的C#程序开发,无论对.Net程序员来说,还是对传统的C/C++程序员来说,均属异类。然而这种方法在很多场景下是非常有效的,尤其是图像编程,所谓谈笑间,樯橹灰飞烟灭,不外如是。     既有C/C++的高性能,又能直接管理内存不给GC带来压力,同时又拥有.net开发的大部分优势,可以快速迭代,何乐而不为呢?

一、简洁优美的代码

    本来初稿这节写了好几百字,将C#指针开发与C/C++开发,Java开发、D语言开发等进行对比,阐述理念。不过现在觉得,阐述一个新事物,没有比用例子更直接的了。     例子:打开一张图像,先将它转化为灰度图像,再进行二值化(变成黑白图像),然后进行染色,将白色的像素变成红色。以上每一个过程都弹出窗体显示出来。     代码截图更有视觉冲击力:

    像诗歌一样简洁和优美,这就是孤的代码。具备C/C++的高性能和C#的行云流水,同时又有IDE的强大生产力相助,说这些话已属多余,看见这样的代码,更应该想到的是:妹纸,今天工作全部搞定,现在有空吗,哥来接你。     这才是工作,这才是生活。留下时间,看看书,看看漫画,玩玩乐乐。最近在看《偷星九月天》,就拿沧殿来测试这段程序吧:

 

改编    程序员A:那帮孙子又新提了几百条需求,老大,你要带我们突围吗?     程序员B:不是突围,是杀光它们!

     下面,请跟随我,来一段短程探险吧。(本文中的代码可在 https://github.com/xiaotie/GebImage/tree/develop 处下载。打包下载地址见 集异璧图像与视觉分析库

二、C# 指针基础

    在C#中使用指针,需要在项目属性中选中“Allow unsafe code”:

 

    接着,还需要在使用指针的代码的上下文中使用unsafe关键字,表明这是一段unsafe代码。     可以用unsafe {  } 将代码围住,如:

复制代码
  unsafe{                         
    new ImageArgb32(path).ShowDialog("原始图像")                             
      .ToGrayscaleImage().ShowDialog("灰度图像")                             
      .ApplyOtsuThreshold().ShowDialog("二值化图像")                             
      .ToImageArgb32()                             
      .ForEach((Argb32* p) => { if (p->Red == 255) *p = Argb32.RED; })                             
      .ShowDialog("染色");                     
  }
复制代码

    也可在方法或属性上加入unsafe关键字,如:

     private unsafe void btnSubmit_Click(object sender, EventArgs e)

 

    也可在class或struct 上加上unsafe 关键字,如:

     public partial unsafe class FrmDemo1 : Form

    指针配合fixed关键字可以操作托管堆上的值类型,如:

复制代码
   public unsafe class Person    
  {        
    public int Age;
       public void SetAge(int age)        
    {            
      fixed (int* p = &Age)            
      {                
        *p = age;            
      }        
    }    
  }
复制代码

    指针可以操作栈上的值类型,如:

             int age = 0;              int* p = &age;              *p = 20;              MessageBox.Show(p->ToString());

    指针也可以操作非托管堆上的内存,如:

  IntPtr handle = System.Runtime.InteropServices.Marshal.AllocHGlobal(4);             
  Int32* p = (Int32*)handle;             
  *p = 20;             
  MessageBox.Show(p->ToString());             
  System.Runtime.InteropServices.Marshal.FreeHGlobal(handle);

    System.Runtime.InteropServices.Marshal.AllocHGlobal 用来从非托管堆上分配内存。System.Runtime.InteropServices.Marshal.FreeHGlobal(handle)用来释放从非托管对上分配的内存。这样我们就可以避开GC,自己管理内存了。

三、几种常用用法

    1、使用Dispose模式管理非托管内存

    如果使用非托管内存,建议用Dispose模式来管理内存,这样做有以下好处: 可以手动dispose来释放内存;可以使用using 关键字开管理内存;即使不释放,当Dispose对象被GC回收时,也会收回内存。

    下面是Dispose模式的简单例子:

View Code
复制代码
1         public unsafe class UnmanagedMemory : IDisposable
2         {
3             public int Count { get; private set; }
4
5             private byte* Handle;
6             private bool _disposed = false;
7
8             public UnmanagedMemory(int bytes)
9             {
10                 Handle = (byte*) System.Runtime.InteropServices.Marshal.AllocHGlobal(bytes);
11                 Count = bytes;
12             }
13
14             public void Dispose()
15             {
16                 Dispose(true);
17                 GC.SuppressFinalize(true);
18             }
19
20             protected virtual void Dispose( bool isDisposing )
21             {
22                 if (_disposed) return;
23                 if (isDisposing)
24                 {
25                     if (Handle != null)
26                     {
27                         System.Runtime.InteropServices.Marshal.FreeHGlobal((IntPtr)Handle);
28                     }
29                 }
30                 _disposed = true;
31             }
32
33             ~UnmanagedMemory()
34            {
35               Dispose( false );
36            }
37         }
复制代码

    使用:

复制代码
  using (UnmanagedMemory memory = new UnmanagedMemory(10))            
  {                
    int* p = (int*)memory.Handle;                
    *p = 20;                
    MessageBox.Show(p->ToString());            
}
复制代码

    2、使用 stackalloc 在栈中分配内存     C# 提供了stackalloc 关键字可以直接在栈中分配内存,一般情况下,使用栈内存会比使用堆内存速度快,且栈内存不用担心内存泄漏。下面是例子:

复制代码
  int* p = stackalloc int[10];  
  for (int i = 0; i < 10; i++)             
  {                 
    p[i] = 2 * i + 2;             
  }             
  MessageBox.Show(p[9].ToString());
复制代码

 

    3、模拟C中的union(联合体)类型      使用 StructLayout 可以模拟C中的union:

复制代码
  [StructLayout(LayoutKind.Explicit)]        
  public struct Argb32        
  {            
    [FieldOffset(0)]            
    public Byte Blue;            
    [FieldOffset(1)]            
    public Byte Green;            
    [FieldOffset(2)]            
    public Byte Red;            
    [FieldOffset(3)]            
    public Byte Alpha;
    [FieldOffset(0)]            
    public Int32 IntVal;        
  }
复制代码

    这个和指针无关,非unsafe环境下也可使用,有很多用途,比如,序列化和反序列化,求hash值 ……

四、C# 指针操作的几个缺点

    C# 指针操作的缺点也不少。下面一一道来。     缺点1:只能用来操作值类型     .Net中,引用类型的内存管理全部是由GC代劳,无法取得其地址,因此,无法用指针来操作引用类型。所以,C#中指针操作受到值类型的限制,其中,最主要的一点就是:值类型无法继承。     这一点看起来是致命的,其实不然。首先,需要用到指针来提高性能的地方,其类型是很少变动的。其次,在OO编程中有个名言:组合优于继承。使用组合,我们可以解决很多需要继承的地方。第三,最后,我们还可以使用引用类型来对值类型打包,进行继承,权衡两者的比重来完成任务。     缺点2:泛型不支持指针类型     C# 中泛型不支持指针类型。这是个很大的限制,在后面的篇幅中,我会引入模板机制来克服这个问题。同理,迭代器也不支持指针,因此,我们需要自己实现迭代机制。     缺点3:没有函数指针     幸运的是,C# 中有delegate,delegate 支持支持指针类型,lambda 表达式也支持指针。后面会详细讲解。

五、引入模板机制

    没有泛型,但是我们可以模拟出一套类似C++的模板机制出来,进行代码复用。这里大量的用到了C#的语法糖和IDE的支持。     先介绍原理:     partial 关键字让我们可以将一个类的代码分在多个文件,那么可以这样分:第一个文件是我们自己写的代码,第二个文件用来描述模板,第三个文件,用来根据模板自动生成代码。     三个文件这样取名字的:

 

    XXXClassHelper 是模板定义文件,XXXClassHelper_Csmacro.cs 是自动生成的模板实现代码。

    ClassHelper文件的例子:

复制代码
namespace Geb.Image
{    
  using TPixel = Argb32;    
  using TCache = System.Int32;    
  using TKernel = System.Int32;    
  using TImage = Geb.Image.ImageArgb32;    
  using TChannel = System.Byte;
    public static partial class ImageArgb32ClassHelper    
  {        
    #region include "ImageClassHelper_Template.cs"        
    #endregion    
  }
    public partial class ImageArgb32    
  {        
    #region include "Image_Template.cs"        
    #endregion
       #region include "Image_Paramid_Argb_Templete.cs"        
    #endregion    
  }
    public partial struct Argb32    
  {        
    #region include "TPixel_Template.cs"        
    #endregion    
  }
}
复制代码

    这里用到了using 语法糖。using 关键字,可以为一个类型取别名。使用 VS 的 #region 来定义所使用的模板文件的位置。上面这个文件中,引用了4个模板文件:ImageClassHelper_Template.cs,Image_Template.cs,Image_Paramid_Argb_Templete.cs 和 TPixel_Template.cs。     只看其中的一个模板文件  Image_Template.cs:

复制代码
using TPixel = System.Byte;
using TCache = System.Int32;
using TKernel = System.Int32;
using System;
using System.Collections.Generic;
using System.Text;
namespace Geb.Image.Hidden
{     
  public abstract class Image_Template : UnmanagedImage<TPixel>     
  {         
    private Image_Template(): base(1,1)
    {             
      throw new NotImplementedException();         
    }         
    #region mixin         
    public unsafe TPixel* Start
    {
      get
      {
        return (TPixel*)this.StartIntPtr;
      }
    }         
    public unsafe TPixel this[int index]         
    {             
      get             
      {                   
        return Start[index];             
      }             
      set             
      {                 
        Start[index] = value;             
      }         
    }          
    #endregion     
  }
}
复制代码

    这个模板文件是编译通过的。也使用了 using 关键字来对使用的类型取别名,同时,在代码中,有一段用 #region mixin 和 #endregion 环绕的代码。只需要写一个工具,将模板文件中 #region mixin 和 #endregion 环绕的代码提取出来,替换到模板定义中 #region include "Image_Template.cs" 和 #endregion 之间,生成第三个文件 ClassHelper_Csmacro.cs 即可实现模板机制。由于都使用了 using 关键字对类型取别名,因此,ClassHelper_Csmacro.cs 文件也是可以编译通过的。在不同的模板定义中,令同样的符号来代表不同的类型,实现了模板代码的公用。     上面机制可以全部自动化。Csmacro 是我写的一个工具,可以完成上面的过程。将它放在系统路径下,然后在项目的build event中添加pre-build 指令即可。Csmacro 程序在代码包的lib的目录下。

 

    如此实装,我们就有模板用了!一切自动化,就好像内置的一样。强类型、有编译器进行类型约束,减少出错的可能。调试也很容易,就和调试普通的C#代码一样,不存在C++中的模板的难调试问题。缺点嘛,就是没有C++中模板的语法优美,但是,也看的过去,至少比C中的宏好看多了是吧。     参照上面对模板的实现,完全可以定义出一套C#的宏出来。没这样做,是因为没这个需求。

    下面是一个完整的例子,为 Person 类和 Cat 类添加模板扩展方法(非扩展方法也可类似添加),由于这个方法有指针,无法用泛型实现:

void SetAge(this T item,  int* age)

    首先,建一个可编译通过的模板类 Template.cs:

复制代码
namespace Introduce.Hide
{     
  using T = Person;     
  public static class Template     
  {         
    #region mixin         
    public static unsafe void SetAge(this T item,  int* age)         
    {             
      item.Age = *age;         
    }         
    #endregion     
  }
}
复制代码

    我在命名空间中加入了 Hide,只要不引用这个命名空间,这个扩展方法不会出现对程序产生干扰。     接着,建立 PersonClassHelper.cs 文件:

复制代码
namespace Introduce {     
  using T = Person;     
  public static partial class PersonClassHelper     
  {         
    #region include "Template.cs"         
    #endregion     
  }
}
复制代码

    建立 CatClassHelper.cs 文件:

复制代码
namespace Introduce {     
  using T = Cat;     
  public static partial class CatClassHelper     
  {         
    #region include "Template.cs"         
    #endregion     
  }
}
复制代码

    为了节省篇幅,我省略了命名空间的引用,实际代码中是有命名空间的引用的。下载包里包含了全部的代码。     接下来,编译一下,哈哈,编译通过。     且慢,怎么看不到编译生成的两个 Csmacro.cs 文件呢?

    这两个文件已经生成了,需要手动将它们添加到项目中,只用添加一次即可。添加进来,再编译一下,哈哈,通过。     这个例子虽小,可不要小看模板啊,在Geb.Image库里,大量使用了模板:

 

    有了模板,只用维护公共代码。

六、迭代器

    下面来实现迭代器。这里,要放弃使用foreach,返回古老的迭代器模式,来访问图像的每一个像素:

复制代码
    public unsafe struct ItArgb32Old    
  {        
    public unsafe Argb32* Current;        
    public unsafe Argb32* End;
    public unsafe Argb32* Next()        
    {            
      if (Current < End) return Current ++;
         else return null;        
    }    
  }
    public static class ImageArgb32Helper    
  {        
    public unsafe static ItArgb32Old CreateItorOld(this ImageArgb32 img)        
    {            
      ItArgb32Old itor = new ItArgb32Old();            
      itor.Current = img.Start;            
      itor.End = img.Start + img.Length;            
      return itor;        
    }    
}
复制代码

    不幸的是,测试性能,这个迭代器比单纯的while循环慢很多。对一个100万像素的图像,将其每一个像素值的Red分量设为200,循环100遍,使用迭代器在我的电脑上耗时242 ms,直接使用循环耗时 72 ms。我测试了很多种方案,均未得到和直接循环性能近似的迭代器实现方案。

    没有办法,只好对迭代器来打折了,只进行部分抽象(这已经不能算迭代器了,但这里仍沿用这个名称):

复制代码
     public unsafe struct ItArgb32     
   {         
     public unsafe Argb32* Start;         
     public unsafe Argb32* End;         
     public int Step(Argb32* ptr)         
     {             
      return 1;         
     }     
   }
复制代码

    产生迭代器的代码:

复制代码
     public unsafe static ItArgb32 CreateItor(this ImageArgb32 img)        
   {         
    ItArgb32 itor = new ItArgb32();         
    itor.Start = img.Start;         
    itor.End = img.Start + img.Length;         
    return itor;     
  }
复制代码

     使用:

     ItArgb32 itor = img.CreateItor();     
    for (Argb32* p = itor.Start; p < itor.End; p+= itor.Step(p))     
    {         
      p->Red = 200;     
   }

    测试性能和直接循环性能几乎一样。有人可能要问,你这样有什么优势?和for循环有什么区别?     这个例子中当然看不出优势,换个例子就可以看出来了。     在图像编程中,有 ROI(Region of Interest,感兴趣区域)的概念。比如,在下面这张女王出场的画面中,假设我们只对她的头部感兴趣(ROI区域),只对该区域进行处理(标注为红色区域)。

 

    对ROI区域创建一个迭代器,用来迭代ROI中的每一行:

复制代码
    public unsafe struct ItRoiArgb32    
  {        
    public unsafe Argb32* Start;        
    public unsafe Argb32* End;        
    public int Width;        
    public int RoiWidth;  
    public int Step(Argb32* ptr)        
    {            
      return Width;        
    }
    public ItArgb32 Itor(Argb32* p)        
    {            
      ItArgb32 it = new ItArgb32();            
      it.Start = p;            
      it.End = p + RoiWidth;            
      return it;        
    }    
   }
复制代码

    这个ROI迭代器又可以产生一个ItArgb32迭代器,来迭代该行中的像素。

    产生ROI迭代器的代码如下,为了简化代码,我这里没有进行ROI的验证:

复制代码
public unsafe static ItRoiArgb32 CreateRoiItor(this ImageArgb32 img,int x, int y, int roiWidth, int roiHeight)        
{            
  ItRoiArgb32 itor = new ItRoiArgb32();            
  itor.Width = img.Width;            
  itor.RoiWidth = roiWidth;            
  itor.Start = img.Start + img.Width * y + x;            
  itor.End = itor.Start + img.Width * roiHeight;            
  return itor;        
}
复制代码

    性能测试表明,使用ROI迭代器进行迭代和直接进行循环,性能一致。     为一副图像添加ROI字段,设置ROI值来控制不同的处理区域,然后用ROI迭代器进行迭代,比直接使用循环要方便得多。

七、风情万种的Lambda表达式

    接下来,来看看C#指针最有风情的一面——Lambda表达式。     C# 里 delegate 支持指针,下面这种写法是没有问题的:

void ActionOnPixel(TPixel* p);

    对于图像处理,我定义了许多扩展方法,ForEach是其中的一种,下面是它的模板定义:

复制代码
 public unsafe static UnmanagedImage<TPixel> ForEach(this UnmanagedImage<TPixel> src, ActionOnPixel handler)        
{            
  TPixel* start = (TPixel*)src.StartIntPtr;            
  TPixel* end = start + src.Length;            
  while (start != end)            
  {                
    handler(start);                
    ++start;            
  }            
  return src;        
}
复制代码

    让我们用lambda表达式对图像迭代,将每像素的Red分量设为200吧,一行代码搞定:

img.ForEach((Argb32* p) => { p->Red = 200; });

    用ForEach测试,对100万像素的图像设置Red通道值为200,循环100次,我的测试结果是 400 ms,约是直接循环的 4-5 倍。可见这是个性能不高的操作(其实也够高了,100万象素,循环100遍,耗时400ms),可以在对性能要求不是特别高时使用。

八、与C/C++的比较

    我测试了很多场景,C# 下指针性能约是 C/C++ 的 70-80%,性能差距,可以忽略。

    相对于C/C++来说,C#无法直接操作硬件是其遗憾,这种情况,可以使用C/C++写段小程序来弥补,不过,我还没遇到这种场景。很多情况都可以P/Invoke解决。     做图像的话,很多时候需要使用显卡加速,如使用CUDA或OpenCL,幸运的是,C#也可以直接写CUDA或OpenCL代码,但是功能可能会受到所用的库的限制。也可以用传统方式写CUDA或OpenCL代码,再P/Invoke调用。如果用传统的C/C++开发的话,也需要做同样的工作。

和C比较:

    这套方案比C的抽象程度高,我们有模板,有lambda表达式,还有一大票的语法糖。在类库上,比C的类库完善的多。我们还有反射,有命名空间等等一大票的东西。

和C++比较:     这套方案的抽象程度比C++要低一些。毕竟,值类型无法继承,模板机制比C++ 差一点。但是在生产力上比C++要高很多。抛开C++那一大票陷阱不说,以秒计算的编译速度就够让C++程序员流口水的。当我们在咖啡馆里约会喝咖啡时,C++程序员还正端着一杯咖啡坐在电脑前等待程序编译结束。

九、接下来的工作

    接下来的工作主要有两个:     内联工具:C# 的内联还不够强大。需要一个内联工具,对想要内联的方法使用特性标记一下,在编译结束后,在IL代码层面内联。     翻译工具:移动开发是个痛。如何将C#的代码翻译成C/C++的代码,在缺乏.Net的运行时下运行?
    这两个工作都不紧要。C#内联效果不好的地方(这种情况很少),可以手动内联。至于移动开发嘛,在哥的一云三端大计中,C# 的定位是云图像开发(C#+CUDA),三端中,桌面运用是用C#和Flash开发,Web和移动应用使用Flash开发,没有C#的事情。

    C/C++ 呢?更没有它们的位置啦!不对,还是有的。用它们来开发Flash应用的核心算法!够另类吧!

若标题中有“转载”字样,则本文版权归原作者所有。若无转载字样,本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连
posted @ 2012-07-10 14:25  one light  阅读(183)  评论(0编辑  收藏  举报