Gram-Schmidt 过程
-
正交化
\(\beta_1=\alpha_1\)
\(\beta_2=\alpha_2-\frac{(\alpha_2,~\beta_1)}{||\beta_1||}\frac{\beta_1}{||\beta_1||}=\alpha_2-\frac{(\alpha_2,~\beta_1)}{||\beta_1||^2}\beta_1=\alpha_2-\frac{(\alpha_2,~\beta_1)}{(\beta_1,~\beta_1)}\beta_1\)
\(\beta_3=\alpha_3-\frac{(\alpha_3,~\beta_1)}{||\beta_1||}\frac{\beta_1}{||\beta_1||}-\frac{(\alpha_3,~\beta_2)}{||\beta_2||}\frac{\beta_2}{||\beta_2||}\\=\alpha_2-\frac{(\alpha_2,~\beta_1)}{||\beta_1||^2}\beta_1-\frac{(\alpha_2,~\beta_2)}{||\beta_2||^2}\beta_2\\=\alpha_2-\frac{(\alpha_2,~\beta_1)}{(\beta_1,~\beta_1)}\beta_1-\frac{(\alpha_2,~\beta_2)}{(\beta_2,~\beta_2)}\beta_2\)
\(\cdots\)
\(\beta_n=\alpha_n-\frac{(\alpha_n,~\beta_1)}{(\beta_1,~\beta_1)}\beta_1-\frac{(\alpha_n,~\beta_2)}{(\beta_2,~\beta_2)}\beta_2-\cdots-\frac{(\alpha_n,~\beta_{n-1})}{(\beta_{n-1},~\beta_{n-1})}\beta_{n-1}\)
-
单位化
\(e_1=\frac{\beta_1}{||\beta_1||}\)
\(e_2=\frac{\beta_2}{||\beta_2||}\)
\(\cdots\)
\(e_n=\frac{\beta_n}{||\beta_n||}\)
本文来自博客园,作者:one2Four,转载请注明原文链接:https://www.cnblogs.com/one2Four/p/15497763.html